1. For an aerofoil the critical Mach number is 0.6. For free stream Mach number 0.6, what will be the Mach number at minimum pressure point on that aerofoil?
 Ans d
 a. 0.6
 b. Less than 0.6
 c. More than 0.6 but less than 1.0
 d. 1.0

2. For a wing the drag coefficient vs Mach number plot is shown in the following figure. Which point corresponds the drag divergence Mach number?
 Ans b
 [Diagram showing drag coefficient vs Mach number]
 a. A
 b. B
 c. C
 d. D

3. Super critical aerofoil is primarily used for
 Ans a
 a. Higher divergence Mach number
 b. More lift coefficient
 c. Higher stall angle
 d. Higher critical Mach number

4. Swept back wings are primarily used for
 Ans d
 a. Higher divergence Mach number
 b. More lift coefficient
 c. Higher stall angle
 d. Higher critical Mach number
5. For a cambered airfoil, $C_{m0\alpha_c,w}$ is Ans b
 a. always positive
 b. always negative
 c. zero
 d. can’t say

6. Cambered aerofoil is primarily used for Ans b
 a. Higher divergence Mach number
 b. Higher $C_{l\text{ max}}$
 c. Higher stall angle
 d. Higher critical Mach number

7. For an aircraft at a given altitude and velocity the induced drag is D_i. If weight of the aircraft is doubled keeping altitude and velocity same. What will be the new induced drag? Ans d
 a. 0.5D_i
 b. D_i
 c. 2D_i
 d. 4D_i

8. Generally, in swept back wings at tip the wash out is given Ans a
 a. To avoid tip stall
 b. To increase lift at tip
 c. To decrease drag
 d. To achieve higher $C_{l\text{ max}}$

9. For similar wing area how wing span b is related to induced drag D_i Ans d
 a. $D_i \propto b$
 b. $D_i \propto b^2$
 c. $D_i \propto 1/b$
 d. $D_i \propto 1/b^2$

10. For similar wing area, how thickness to chord ratio is related to critical Mach number Ans b
 a. M_{cr} increases with t/c
 b. M_{cr} decreases with t/c
 c. M_{cr} is independent of t/c
 d. Can’t say