Week 8- Assignment 8-MCQ

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) In the following groups which is/are connected group(s)?

- \(SU(2) \)
- \(U(n) \)
- \(GL(n, \mathbb{C}) \)
- All of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
All of the above

2) Identify the number of independent parameters in the group \(Sp(6) \).

- 12
- 20
- 21
- 6

No, the answer is incorrect.
Score: 0
Accepted Answers:
21

3) An \(SU(2) \) matrix \(u_n \) is given as below, where \(\tau^i \) are Pauli matrices.\[
\begin{pmatrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{pmatrix}
\]

\(\alpha = \) ______
\(\tau^1 = \) ______
\(\tau^2 = \) ______
\(\tau^3 = \) ______

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\alpha = 3\pi \)
\(\tau^1 = \) ______
\(\tau^2 = \) ______
\(\tau^3 = \) ______
4) Obtain a closed form expression for the one parameter subgroup \(\exp\{\alpha K_1\} \) where \(\alpha \) is a real parameter and \(\{K_1\}_i = \delta_{\alpha i}\delta_{\beta j} + \delta_{\alpha j}\delta_{\beta i}, \ i, j = 0, 1, 2, 3 \) is the generator of Lorentz boosts along the \(x^1 \) axis.

\[
\begin{pmatrix}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\frac{1}{2} \begin{pmatrix} \sqrt{3} - i \ 0 \end{pmatrix} \)

5) In the following groups which is simply connected group?

\[
\begin{pmatrix}
\cosh \alpha & \sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{pmatrix}
cosh \alpha & \sinh \alpha & 0 & 0 \\
\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
6) In Special Relativity, the Minkowski metric is
 \(SU(2) \)
 \(U(n) \)
 \(GL(n, \mathbb{C}) \)
 None of the above.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(SU(2) \)

7) For a Unitary matrix \(U \) we can write
 \[U^{-1} = U^T \]
 \[U^{-1} = U^\dagger \]
 \[U^{-1} = U \]
 \[U = U^\dagger \]

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \[U^{-1} = U^\dagger \]

8) In Minkowski space, infinitesimal spacetime interval
 \[(dl)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta (d\phi)^2 \]
 can be positive, negative or zero
 always positive
 always negative
 always takes a constant value

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 can be positive, negative or zero

9) In spherical polar coordinates in 3 dimensions, \((dl)^2 = (dr)^2 + r^2(d\theta)^2 + r^2 \sin^2 \theta (d\phi)^2 \), then the metric of this space can be
written in the \(\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix} \) basis as,

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & r^2 \sin^2 \theta & 0 \\
0 & 0 & r^2
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & r^2 & 0 \\
0 & 0 & r^2 \sin^2 \theta
\end{pmatrix}
\begin{pmatrix}
r^2 & 0 & 0 \\
0 & r^2 & 0 \\
0 & 0 & r^2 \sin^2 \theta
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & r^2 & 0 \\
0 & 0 & r^2 \sin^2 \theta
\end{pmatrix}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & r^2 & 0 \\
0 & 0 & r^2 \sin^2 \theta
\end{pmatrix}
\]

10) Find the \(\{ q^2 p, p^2 q \} \), where PB refers to the Poisson Bracket with respect to \((q, p) \). 1 point

- \(-3p^2 q^2\)
- \(3pq^2\)
- \(3q^2\)
- \(3p^2q\)
- \(3p^2q^2\)

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(3p^2 q^2\)