Assignment 3

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

Due on 2019-02-20, 23:59 IST

For some questions in this assignment, you will need to recall the definition of a linear subspace. A subset $V \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \beta y \in V$, for all $x, y \in V$ and $\alpha, \beta \in \mathbb{R}$.

1) Consider the following matrix.

$$A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{bmatrix}.$$

Then the nullity of A is equal to

1
2
3
4

No, the answer is incorrect.
Score: 0
Accepted Answers:
2

2) Consider the following matrix

$$V = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 2 & -2 \\
1 & 1 & 4 & 4 \\
1 & -1 & 8 & -8
\end{bmatrix}.$$
L(S), where \(S = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} \right\} \).

L(S), where \(S = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \\ 4 \\ 4 \\ -8 \\ -8 \\ -8 \\ -8 \end{bmatrix} \right\} \).

L(S), where \(S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 4 \\ -8 \end{bmatrix} \right\} \).

\(\mathbb{R}^4 \).

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\mathbb{R}^4 \).

3) Let \(V \) and \(W \) be two subspaces of \(\mathbb{R}^5 \) such that \(\dim V = 3 \) and \(\dim W = 2 \). Define

\(V + W = \{ v + w : v \in V, w \in W \} \).

(Check that \(V + W \) is a subspace.) Assuming that \(V + W \) is a subspace, which of the following conditions will imply that \(V + W = \mathbb{R}^5 \)?

1) \(\dim (V+W) > \max(\dim V, \dim W) \).
2) The intersection of \(V \) and \(W \) is the set \(\{0\} \), where \(0 \) is the zero vector.
3) \(\dim V + \dim W > 4 \).
4) The intersection of \(V \) and \(W \) is nonempty.

No, the answer is incorrect.
Score: 0
Accepted Answers:
The intersection of \(V \) and \(W \) is the set \(\{0\} \), where \(0 \) is the zero vector.

4) Consider the vector space \(\mathbb{R}^3 \). Let \(Z = \{0\} \), where \(0 \) is the zero vector. Which of the following statements is correct?

1) \(Z \) is NOT a linear subspace.
2) \(Z \) is a linear subspace with dimension 1.
3) \(Z \) is a linear subspace with \(Z \) itself as a basis.
4) \(Z \) is a linear subspace with the empty set as a basis.

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(Z \) is a linear subspace with the empty set as a basis.