Assignment 8A - Objective

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Let \(f(x, y) = 12x^2 + y^2 + 12xy - 75y \). Then the point \((2, -3)\) is
 - a critical point which is a local maximum.
 - a critical point which is a local minimum.
 - a critical point which is a saddle point.
 - not a critical point.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - a critical point which is a saddle point.

2) Let \(g(x, y) = y^2 - 32y + x^2 - x^3 \). Then the point \((1, 2)\) is
 - a critical point which is a local maximum.
 - a critical point which is a local minimum.
 - a critical point which is a saddle point.
 - not a critical point.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - not a critical point.

3) For a box with an open top having dimensions \(l \times b \times h \), the volume is \(V = lbh \) and the surface area is \(A = 2hb + 2lh + lb \), where \(l \) is the length, \(b \) is the breadth and \(h \) is the height. If \(V \) is assumed to be a fixed constant, then the dimensions of the box that minimize \(A \) are
 - \(l = (2V)^{1/3}, b = (2V)^{1/3}, h = V/(2V)^{1/3} \)
 - not a critical point.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - not a critical point.

4) Let \(h(x, y) = x^2 - y^2 + xy \). Then the point \((0, 0)\) is
 - a critical point which is not a saddle point.
 - a critical point which is a saddle point.
 - not a critical point.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - not a critical point.

5) Let \(k(x, y) = x^2 + y^2 + 2xy \). Then
 - \(k \) has infinitely many critical points which are all global minima.
 - \(k \) has infinitely many critical points of which some are local extrema and some are saddle points.
 - \(k \) has exactly four critical points of which two are local maxima and two are local minima.
 - \(k \) has no critical points.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - \(k \) has infinitely many critical points which are all global minima.