34.1 Gradient of a scalar field

We have seen that for a function \(f(x, y, z) \) the partial derivatives \(f_x, f_y, f_z \), whenever they exist, play an important role. This motivates the following definition.

34.1.1 Definition:

Let \(f(x, y, z) \) and \((x_0, y_0, z_0) \) be differentiable at \((x_0, y_0, z_0) \). If each of \(f_x, f_y \) and \(f_z \) exist at a point \((x_0, y_0, z_0) \), then the vector \((f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0)) \) is called the gradient vector of \(f \) at \((x_0, y_0, z_0) \), and is denoted by

\[
(\nabla f)(x_0, y_0, z_0) = (f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0)).
\]

For a function of 2-variables, it is given by

\[
(\nabla f)(x_0, y_0) = (f_x(x_0, y_0), f_y(x_0, y_0, z_0)).
\]

34.1.2 Theorem:

Let \((x_0, y_0, z_0) \) be differentiable at \((x_0, y_0, z_0) \).

(i) For every unit vector \(u \in \mathbb{R}^3 \), \((D_u)(x_0, y_0, z_0) \) exist and

\[
(D_u f)(x_0, y_0, z_0) = (\nabla f)(x_0, y_0, z_0) \cdot u.
\]
(ii) Suppose \(D \) is such that any two points in it can be joined by line segments parallel to axes and \((\nabla f)(x,y,z) = 0\) for all \((x,y,z) \in D\), then \(f \) is constant in \(D \).

Proof

34.1.2 Theorem:

Let \((x_0, y_0, z_0) \in D \subseteq \mathbb{R}^3\) and \(f : D \to \mathbb{R} \) be differentiable at \((x_0, y_0, z_0)\).

(i) For every unit vector \(u \in \mathbb{R}^3 \), \((D_u f)(x_0, y_0, z_0)\) exist and

\[
(D_u f)(x_0, y_0, z_0) = (\nabla f)(x_0, y_0, z_0) \cdot u.
\]

(ii) Suppose \(D \) is such that any two points in it can be joined by line segments parallel to axes and \((\nabla f)(x,y,z) = 0\) for all \((x,y,z) \in D\), then \(f \) is constant in \(D \).

Proof

The proof of (i) follows from theorem 33.2.4. To prove (ii) first note that the given condition \((\nabla f)(x,y,z) = 0\) for all \((x,y,z) \in D\), implies that

each of \(f_x, f_y, f_z = 0 \) in \(D \).

Let \(A, B \in D \) be such that \(A \) and \(B \) can be joined by a path as shown in figure below, where \(AC, BC \) are parallel to axes.

![Figure 1](image)

Then, by one variable case,

\(f(A) = f(C) = f(B) \).

Thus, if any two points in \(D \) can be joined by a piecewise linear path, moving parallel to axes only, then

\((\nabla f)(x,y) = 0\) for all \(x,y \in D \) implies that \(f \) is constant in \(D \).
34.1.3 Example:

Let

\[f(x, y, z) = x^2 y - yz^3 + z. \]

Then

\[
\begin{align*}
 f_x (x, y, z) &= 2xy, \\
 f_y (x, y, z) &= x^2 - z^3, \\
 f_z (x, y, z) &= -3yz^2 + 1.
\end{align*}
\]

Obviously, each of \(f_x, f_y, f_z \) is a continuous function everywhere. Then, \(f \) is differentiable and for every unit vector \(u \)

\[
(D_u f)(x_0, y_0, z_0) = (\nabla f)(x_0, y_0, z_0) \cdot u.
\]

For example, if we want to find the directional derivative of \(f \) at the point \((1, -2, 0)\), in the direction of the vector \(\mathbf{v} \), than we take

\[
\mathbf{u} = \frac{2\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{a}} = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}
\]

and

\[
f_x (1, -2, 0) = -4, \quad f_y (1, -2, 0) = 1, \quad f_z (1, -2, 0) = 1.
\]

Thus

\[
(D_u f)(1, -1, 0) = (-4, 1, 1) \cdot \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right) = -3.
\]

34.1.4 Remark:

The formula

\[
(D_u f)(x_0, y_0, z_0) = (\nabla f)(x_0, y_0, z_0) \cdot u
\]

may not hold if \(f_x, f_y \) or either of \(f_y \) is discontinuous at \((x_0, y_0, z_0)\).

For example, consider \(f: \mathbb{R}^2 \to \mathbb{R} \) given by

\[
f(0, 0) = 0 \quad \text{and} \quad f(x, y) = \frac{x^3}{x^2 + y^2} \quad \text{for} \quad (x, y) \neq (0, 0).
\]

We have

\[
\nabla f(0, 0) = (1, 0),
\]

and for any unit vector \(u = (u_1, u_2) \),

\[
(D_u f)(0, 0) = u_1^2.
\]

Thus,

\[
(D_u f)(0, 0) \neq (\nabla f(0, 0)) \cdot u, \quad \text{whenever} \quad u_1 \neq 0, 1, -1.
\]
Note that for \((x_0, y_0) \neq (0, 0)\), we have
\[
f_x(x_0, y_0) = \frac{x_0^4 + 3x_0^2y_0^2}{(x_0^2 + y_0^2)^2} \quad \text{and} \quad f_y(x_0, y_0) = \frac{-2x_0^3y_0}{(x_0^2 + y_0^2)^2}.
\]

It is easy to see that both \(f_x\) and \(f_y\) are discontinuous at \((0, 0)\).

We describe next some geometric properties of the gradient.

34.1.5 Theorem:

Let \(f : D \subseteq \mathbb{R}^3 \to \mathbb{R}\) be differentiable at \((x_0, y_0, z_0) \in D\) so that that
\[
\nabla f(x_0, y_0, z_0) \neq (0, 0, 0).
\]

Let \(u = (u_1, u_2, u_3)\) be a unit vector. Then the following holds:

(i) Near the point \((x_0, y_0, z_0)\), the direction in which \(f\) increases most rapidly is that of \(\nabla f(x_0, y_0, z_0)\).

(ii) Near the point \((x_0, y_0, z_0)\), the direction in which \(f\) decreases most rapidly is the one opposite to that of \(\nabla f(x_0, y_0, z_0)\).

(iii) Near the point \((x_0, y_0, z_0)\), the directions perpendicular to that of \(\nabla f(x_0, y_0)\) are the directions of no change in \(f\).

Proof

By definition, we have
\[
(\nabla f \cdot u)(x_0, y_0, z_0) = (\nabla f(x_0, y_0, z_0)) \cdot u = |\nabla f(x_0, y_0, z_0)| \cos \theta,
\]
where \(\theta \in [0, \pi]\) is the angle between \(\nabla f(x_0, y_0, z_0)\) and \(u\). Since \(-1 \leq \cos \theta \leq 1\), we have
\[
(\nabla f \cdot u)(x_0, y_0, z_0) \text{ is maximum when } \cos \theta = 1, \theta = 0.
\]
Thus, near \((x_0, y_0, z_0)\),
\[
u = \frac{\nabla f(x_0, y_0, z_0)}{|\nabla f(x_0, y_0, z_0)|}
\]
is the direction in which \(f\) increases most rapidly.

The value of \(\nabla f \cdot u(x_0, y_0, z_0)\) is minimum when \(\cos \theta = -1\), that is, when \(\theta = \pi\). Thus, near
Finally, \((D_{x_0}f)(x_0, y_0, z_0) = 0 \) when \(\cos \theta = 0 \), that is, when \(\varphi = \pi/2 \). Thus, near \((x_0, y_0, z_0)\),
\[
\mathbf{u} = \pm \frac{f_y(x_0, y_0, z_0) \mathbf{i} - f_x(x_0, y_0, z_0) \mathbf{j}}{|f(x_0, y_0, z_0)|}
\]
are the directions of no change in \(f \).

34.1.6 Note:
In case \(\nabla f(x_0, y_0, z_0) = (0, 0, 0) \), we have \((D_{x_0}f)(x_0, y_0, z_0) = 0 \) for every \(u \), and hence near \((x_0, y_0, z_0)\), \(f \) has no rate of change in all directions.

34.1.7 Example:
Consider \(f : \mathbb{R}^2 \to \mathbb{R} \) given by Suppose
\[
f(x, y) = 4 - x^2 - y^2 \text{ for } (x, y) \in \mathbb{R}^2.
\]
We have
\[
f_x = -2x, f_y = -2y.
\]
At \((x_0, y_0) = (1, 1)\)
\[
\nabla f(1, 1) = (-2, -2).
\]
Thus, on the surface \(z = f(x, y) \) near \((1, 1)\),
\[
\frac{\nabla f(1, 1)}{|\nabla f(1, 1)|} = \frac{(-2, -2)}{2\sqrt{2}} = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)
\]
is the direction of steepest ascent.

while in the reverse direction, namely,
\[
\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\]
is direction of steepest descent.

The directions of no change are
\[
\pm \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right).
\]
Since \(\nabla f(0, 0) = (0, 0) \), rate of change of \(f \) is zero in every direction at \((0, 0)\).

34.1.8 Example:
Let
\[
f(x, y) = 20 - 4x^2 - y^2
\]
represent the temperature of a metallic sheet. Starting at the point \((2, 1)\) let us find the continuous path
\[
\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j},
\]
that will give the direction of maximum increase in temperature. Since, the direction to this path at any time point \(t \) is
\[
\mathbf{r}'(t) = x'(t) \mathbf{i} + y'(t) \mathbf{j},
\]
and that has to be of maximum increase of \(f \), we should have
\[\alpha r'(t) = \nabla f, \text{ for some scalar } \alpha. \]

That is,
\[\alpha x'(t) \mathbf{i} + \alpha y'(t) \mathbf{j} = -8x \mathbf{i} - 2y \mathbf{j}, \]
i.e.,
\[\alpha x'(t) = -8x, \; \alpha y'(t) = -2y. \]
This gives us the differential equation
\[\frac{dy}{dx} = \frac{2y}{8x} = \frac{y}{4x}. \]
A solution to which is
\[x = ky^4, \; k \text{ some scalar.} \]
Since, this passes through \((1,2)\), we have
\[2 = k. \]
Thus, the required path is \(x = 2y^4 \).

Practice Exercises

(1) Find the gradient for the following functions at the indicated point \(P \) and its directional derivative at \(P \) in the direction of the indicated point \(Q \):

(i) \(f(x, y) = \sqrt{xy} e^y, \; P = (1, 1), \; Q = (0, -1) \).

(ii) \(f(x, y, z) = x^3y^2z^5 - 2xz + yz + 3x, \; P = (-1, -2, 1), \; Q = (0, 0, -1) \).

Answers

(2) For the following functions, find the direction of maximum increase at the indicated point:

(i) \(f(x, y, z) = \sin xy + \cos yz, \; P = (-3, 0, 7) \).

(ii) \(f(x, y, z) = 2xyz + y^2 + z^2, \; P = (2, 1, 1) \).

Answers

(3) The temperature at a point \((x, y, z)\) on the surface of a body is given by

\[T(x, y, z) = 2x^2 - y^2 + 4z^2. \]

Find the rate of change of temperature at the point \(P = (1, -2, 1) \) in the direction of the vector \(4\mathbf{i} - \mathbf{j} + 2\mathbf{k} \).

In what direction at \(P \), the temperature is decreasing most rapidly?

Answers

(4) If \(z = f(x, y) \) is a differentiable function, where \(x = x(t) \) and \(y = y(t) \) are also differentiable with respect to \(t \), compute \(\frac{dz}{dt} \) in terms of \(\nabla z \).

Answers

(5) Let \(f(x, y) \) be a differentiable function such that
for any two fixed vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^2 \) such that \(\mathbf{u} \neq \alpha \mathbf{v} \) for any constant \(\alpha \). Show that \((D_{\mathbf{w}}f)(x, y) = 0 \) for all \(\mathbf{w} \in \mathbb{R}^2 \).

(6) Let \(f(x, y) \) be such that

(i) \(f_x(x, y) \) and \(f_y(x, y) \) exist for all \((x, y) \in B_r(1, 2) \) for some \(r > 0 \) and are continuous at \((1, 2) \).

(ii) The directional derivative of \(f \) at \((1, 2) \) in the direction toward \((2, 3) \) is \(2\sqrt{2} \).

(iii) The directional derivative of \(f \) at \((1, 2) \) in the direction toward \((1, 0) \) is \(-3\). Find \(f_x(1, 2), f_y(1, 2) \) and the directional derivative of \(f \) at \((1, 2) \) in the direction toward \((4, 6) \).

Answers

(7) Let \(f : D \subseteq \mathbb{R}^3 \to \mathbb{R} \) be such that all \(f_x, f_y, f_z, g_x, g_y \) and \(g_z \) exist in \(B_r((x_0, y_0)) \), for some \(r > 0 \).

Prove the following:

(i) \((\nabla f)(f \pm g) = (\nabla f) \pm (\nabla g) \).

(ii) \(\nabla (fg) = f(\nabla g) + (\nabla f)g \).

(iii) \(\nabla (\alpha f) = \alpha (\nabla f) \), for every \(\alpha \in \mathbb{R} \).

Recap

In this section you have learnt the following

- The notions gradient vector

- The relation of gradient with the directional derivative