Module 6: Definition of Integral

Lecture 17: Fundamental theorem of calculus [Section 17.1]

Objectives
In this section you will learn the following:

- Fundamental theorem of calculus, which relates integration with differentiation.

17.1 Fundamental Theorem of Calculus

In this lecture, we describe an important theorem which connects integration with differentiation. We first make a simple observation:

17.1.1 Proposition:

Let \(f : [a, b] \to \mathbb{R} \) be an integral function. If \(A \in \mathbb{R} \) is such that
\[
L(P, f) \leq A \leq U(P, f)
\]
for every partition \(P \) of \([a, b] \), then \(f \) is integrable and
\[
A = \int_a^b f(x)\,dx.
\]

Proof:

17.1.1 Proposition:

Let \(f : [a, b] \to \mathbb{R} \) be an integral function. If \(A \in \mathbb{R} \) is such that
\[
L(P, f) \leq A \leq U(P, f)
\]
for every partition \(P \) of \([a, b] \), then \(f \) is integrable and
\[
A = \int_a^b f(x)\,dx.
\]

Proof:
Since \(f \) is integrable, there exists a sequence \(\left(P_n \right)_{n \in \mathbb{N}} \) of refinement partitions of \([a, b]\) such that
\[
\lim_{n \to \infty} \left[U(P_n, f) - L(P_n, f) \right] = 0.
\]
By the given hypothesis,
\[
L(P_n, f) \leq A \leq U(P_n, f),
\]
for every \(n \geq 1 \).
Hence,
\[
\lim_{n \to \infty} U(P_n, f) = A = \lim_{n \to \infty} L(P_n, f).
\]
Thus, by definition
\[
A = \int_a^b f(x) \, dx.
\]

17.1.2 Fundamental Theorem of Calculus - I (FTC-I):

Let \(f, F : [a, b] \to \mathbb{R} \) be functions with the following properties:

(i) \(f \) is integrable on \([a, b]\).

(ii) \(F \) is continuous on \([a, b]\).

(iii) \(F \) is differentiable on \((a, b)\) with \(F'(x) = f(x) \) for all \(x \in (a, b) \).

Then,
\[
\int_a^b f(t) \, dt = F(b) - F(a).
\]

Proof:

Let \(P = \{a = x_0, x_1, \ldots, x_n = b\} \) be any partition of \([a, b]\). Then
\[
F(b) - F(a) = F(x_n) - F(x_0) = \sum_{k=1}^{n} \left[F(x_k) - F(x_{k-1}) \right].
\]
By the mean value theorem for \(F \) on \([x_{k-1}, x_k]\), there exists \(c_k \in (x_{k-1}, x_k) \) such that
\[
F(x_k) - F(x_{k-1}) = F'(c_k)(x_k - x_{k-1}).
\]
Since \(F'(x) = f(x) \), for all \(x \in [a, b] \), we have
\[
F(x_k) - F(x_{k-1}) = f(c_k)(x_k - x_{k-1}).
\]
From equations (2) and (3), we get
\[
F(b) - F(a) = \sum_{k=1}^{n} f(c_k)(x_k - x_{k-1}).
\]
Thus, for every partition \(P \) of \([a, b]\),
\[
L(P, f) \leq F(b) - F(a) \leq U(P, f).
\]
Hence, \(F(b) - F(a) = \int_a^b f(x) \, dx \).

17.1.3 Examples:

(i) Since, for every \(n \geq 1 \),
\[
\frac{d}{dx} (x^n) = nx^{n-1},
\]
for every interval \([a, b]\),
\[
\int_a^b nx^{n-1} \, dx = b^n - a^n,
\]
i.e.,
\[
\int_a^b x^{n-1} \, dx = \frac{b^n - a^n}{n}.
\]

(ii) Since
\[
\frac{d}{dx} (\sin x) = \cos x,
\]
for \(a, b \in \mathbb{R} \) with \(a < b \),
\[
\int_a^b \cos x \, dx = \sin(b) - \sin(a).
\]

(iii) For the function \(f(x) = \exp(x), x \in \mathbb{R} \)
\[
\frac{d}{dx} (\exp(x)) = \exp(x).
\]
Hence, for \(a, b \in \mathbb{R} \) with \(a < b \),
\[
\int_a^b e^x \, dx = e^b - e^a.
\]

17.1.4 Definition :

Let \(f, F : [a, b] \to \mathbb{R} \) be functions such that \(F \) is differentiable and
\[
F'(x) = f(x) \text{ for all } x \in (a, b).
\]
Then, \(F \) is called an antiderivative of \(f \) on \([a, b]\).

17.1.5 Examples :

(i) Let \(F(x) = x^2, x \in \mathbb{R} \). Since \(f'(x) = 2x \), which is a continuous function, an antiderivative of \(f(x) = 2x \) is
\[
F(x) = x^2.
\]
Infact, for any \(n \neq -1 \), since
\[F(x) = x^2 \]
\[\frac{d}{dx} (x^n) = nx^{n-1}, \]
we deduce that the function \(f(x) = x^n \) has antiderivative
\[F(x) = \frac{x^{n+1}}{n+1}, \quad x \in \mathbb{R}, \; n \neq -1 \]

(ii) For \(F(x) = \cos x, \; x \in \mathbb{R}, \; F'(x) = -\sin x \), implies that \(f(x) = \sin x \) has an antiderivative, namely
\[f(x) = \cos x. \]

17.1.6 Remark:
If \(F(x) \) is an antiderivative of \(f(x) \), then clearly
\[G(x) := F(x) + c, \; c \text{ a fixed constant}, \]
is also an antiderivative of \(f \). Thus antiderivative of a function \(f(x) \) is not unique. Any two antiderivatives differ by a constant.

17.1.7 Definition:
Let \(f : [a, b] \to \mathbb{R} \). The set of all the antiderivatives of \(f \) is denoted by
\[\int f(x) \, dx, \]
and is called the indefinite integral or just integral of \(f \). Since any of two elements of this set differ only by a constant, we also write
\[\int f(x) \, dx = F(x) + c, \]
where \(F \) is some antiderivative of \(f \).

17.1.8 Examples:
In view of examples 17.2.5, we can write
\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + c, \; n \neq -1 \]
and
\[\int \cos x \, dx = \sin x + c. \]

In view of theorem 17.1.1, since the knowledge about the antiderivative of a function is useful in calculating the integral of the function, it is natural to ask the question:
Given a function \(f : [a, b] \to \mathbb{R} \), can we always find an antiderivative of \(f \) ?
The answer to this is given by the following:

17.1.9 Fundamental Theorem of Calculus - II (FTC - II):
Let \(f : [a, b] \to \mathbb{R} \) be continuous. Then
\[F(x) = \int_a^x f(t) \, dt, \quad x \in [a, b], \]
is differentiable with \(\frac{d}{dx} F(x) = f(x) \), i.e., has an anti-derivative, namely \(F \).
\[f(x) = F'(x) \quad f \]

17.1.10 Remark:

Though the above theorem tells us that every continuous function has an anti-derivative, it may not be always possible to find it explicitly. Some methods that help us to do this, are discussed in the next section.

PRACTICE EXERCISES

1. Let \(f \) have an antiderivative \(F \) and \(g \) have an antiderivative \(G \). Find an antiderivative of the following in terms of \(F \) and \(G \):

 - (i) \(\alpha f, \alpha \in \mathbb{R} \).
 - (ii) \(f + g \).

2. Show that if \(f : [a, b] \to \mathbb{R} \) is continuous and \(\beta \in \mathbb{R} \) is given, then there is a unique antiderivative \(F \) of \(f \) such that \(F(\alpha) = \beta \) for a given \(\alpha \in [a, b] \).

3. For the following \(f \), find unique antiderivative \(F \) with the specified values at a specified point:

 - (i) \(f(x) = 3x^2, \quad F(2) = 10 \).
 - (ii) \(f(x) = x^2 + x^3 + x^4, \quad F(1) = 0 \).
 - (iii) \(f(x) = x^{\frac{1}{3}}, \quad F(1) = 0 \).

4. Find the average values of the following functions over the indicated intervals:

 - (i) \(f(x)3x^2 - 2x, \quad [0, 2] \).
 - (ii) \(f(x) = 4 - x^2, \quad [-1, 1] \).
 - (iii) \(f(x) = \cos x, \quad [0, 3\pi/2] \).

Recap

In this section you have learnt the following:

- Fundamental theorem of calculus, which relates integration with differentiation.

(Section 17.2)

Objectives

In this section you will learn the following:

- Integration by parts formula
17.2 Applications of fundamental theorem of calculus

17.2.1 Theorem (Integration by Parts):

Let \(F, G : [a, b] \to \mathbb{R} \) be differentiable functions such that both \(F', G' \) are Riemann integrable on \([a, b]\). Then

\[
\int_a^b F(x)G'(x)\,dx = F(b)G(b) - F(a)G(a) - \int_a^b F'(x)G(x)\,dx.
\]

Proof:

Note that, by the product rate for differentiation

\[
(FG)' = F'G + FG'.
\]

Since both \(F'G \) and \(FG' \) are integrable, by FTC-I, we have

\[
F(b)G(b) - F(a)G(a) = \int_a^b (FG)'(x)\,dx
= \int_a^b \left[F'(x)G(x) + F(x)G'(x)\right]dx
= \int_a^b F'(x)G(x)\,dx + \int_a^b F(x)G'(x)\,dx.
\]
17.2.2 Theorem (Integration by direct Substitution):

Let $f : [a, b] \to \mathbb{R}$, $g : [c, d] \to \mathbb{R}$ be functions such that

(i) f is continuous on $[a, b]$.

(ii) g is differentiable on $[c, d]$ with $g(c) = a$ and $g(d) = b$.

(iii) g' Riemann integrable on $[c, d]$.

Then

$$
\int_c^d f(g(t))g'(t) \, dt = \int_a^b f(x) \, dx.
$$

Proof:

Since f is continuous, by FTC-I, f has an antiderivative, say F. Then $F'(x) = f(x)$ for all x.

Also by the chain rule,

$$(F \circ g)'(x) = F'(g(x))g'(x) = f(g(x))g'(x).$$

Thus, by FTC-I

$$(F \circ g)(d) - (F \circ g)(c) = \int_c^d (F \circ g)'(x) \, dx
= \int_c^d f(g(x))g'(x) \, dx.$$ \hspace{1cm} (4)

Also, again by FTC-I,

$$
(F \circ g)(d) - (F \circ g)(c) = F(g(d)) - F(g(c))
= F(b) - F(a)
= \int_a^b f(x) \, dx.
$$ \hspace{1cm} (5)

Proof is complete from (4) and (5).

Theorems 17.2.1 and 17.2.2 give us techniques to evaluate definite integrals.

17.2.3 Examples:

(i) To evaluate

$$
\int x e^{ax} \, dx, \quad a \neq 0,
$$

we write

$$
F(x) = x, G(x) = e^{ax}.
$$

Then

$$
F'(x) = 1 \text{ and } G'(x) = ae^{ax}.
$$

Thus, by theorem 17.2.1,
\[\int_{a}^{b} x e^{ax} \, dx = \frac{1}{\alpha} \int_{a}^{b} x (\alpha e^{ax}) \, dx \]
\[= \frac{1}{\alpha} \left[b e^{ab} - a e^{ab} \right] - \left[\frac{e^{ax}}{\alpha} \right]_{a}^{b} \]
\[= (b e^{ab} - a e^{ab}) - \frac{e^{ab} - e^{a}}{\alpha}. \]

(ii) To compute \[I = \int_{0}^{1} 2x(x^2 + 1)^2 \, dx, \] let us write
\[f(u) := \frac{1}{u^2}, u := g(x) = x^2 + 1. \]
Then by theorem 17.2.2,
\[I = \int_{c}^{d} f(g(x)) g'(x) \, dx = \int_{a}^{b} \frac{1}{u^2} \, du, \]
where \(a = g(c) = 1 \) and \(b = g(d) = 2 \).
Hence
\[I = \left[\frac{2}{3} \frac{u^{-2}}{u} \right]_{1}^{2} = \frac{2}{3} \left[\frac{2}{2^2 - 1} \right]. \]

17.2.4 Theorem (Leibnitz Rule):

Let \(f : [a, b] \to \mathbb{R} \) be continuous and \(u, v : [a, b] \to [a, b] \) be differentiable. Then \(\forall \gamma \in [a, b] \)
\[\frac{d}{dx} \left(\int_{u(x)}^{v(x)} f(t) \, dt \right) \bigg|_{x=\gamma} = f(v(\gamma))v'(\gamma) - f(u(\gamma))u'(\gamma). \]

Proof:

Since for \(x \in [a, b] \),
\[F(x) = \int_{a}^{x} f(t) \, dt \] is differentiable with \(F'(x) = f(x) \),
by chain rule, for all \(\gamma \in [a, b] \), we have
\[\frac{d}{dx} (Fou) \bigg|_{x=\gamma} = F'\left(u(\gamma)\right)u'(\gamma) = f\left(u(\gamma)\right)u'(\gamma), \] (6)
and
\[\frac{d}{dx} \left. (F \circ \nu) \right|_{x=\gamma} = F'(\nu(\gamma))\nu'(\gamma) = f(\nu(\gamma))\nu'(\gamma). \] (7)

Also by FTC-I,
\[F(\nu(x)) - F(\mu(x)) = \int_{\mu(x)}^{\nu(x)} F'(t) \, dt = \int_{\mu(x)}^{\nu(x)} f(t) \, dt. \] (8)

Hence, by (6), (7) and (8), we have
\[\left. \frac{d}{dx} \int_{\mu(x)}^{\nu(x)} f(t) \, dt \right|_{x=\gamma} = f(\nu(\gamma))\nu'(\gamma) - f(\mu(\gamma))\mu'(\gamma). \]

17.2.5 Example:

Let
\[F(x) = \int_1^x \frac{1}{t} \, dt, \quad x > 0. \]

Then, by theorem 17.2.4, \(F'(x) \) exists and for \(x > 0 \),
\[F'(x) = \frac{1}{x} - \left(\frac{1}{x^2} \right) = \frac{1}{x} + \frac{1}{x} = \frac{2}{x}. \]

PRACTICE EXERCISES

1. Using Leibnitz’s Rule, compute the following:
 (a) \(\frac{d^2 y}{dx^2} \), if \(y = \int_0^x \frac{dt}{\sqrt{1+t^2}} \)
 (b) \(\frac{d}{dx} \), if for \(x \in \mathbb{R} \)
 (i) \(F(x) = \int_1^{2x} \cos(t^2) \, dt. \)
 (ii) \(F(x) = \int_0^{x^2} \cos(t) \, dt. \)

2. Let \(f: \mathbb{R} \to \mathbb{R} \) be continuous and \(\lambda \in \mathbb{R}, \lambda \neq 0 \). For \(x \in \mathbb{R} \), let
\[g(x) = \frac{1}{\lambda} \int_0^x f(t) \sin \lambda(x-t) \, dt. \]
Show that
\[g(0) = 0 = g'(0) \]
and \(g \) satisfies the following:
\[g''(x) + \lambda^2 g(x) = f(x) \text{ for all } x \in \mathbb{R}. \]
3. Let \(P \) be a real number and let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function such that

\[
f(x + p) = f(x) \quad \text{for all } x \in \mathbb{R}.
\]

Let

\[
\phi(x) := \int_{x}^{x+p} f(t) \, dt, \quad x \in \mathbb{R}.
\]

Show that \(\phi \) is a constant function, independent of \(P \).

4. Let \(f : [0, \infty) \to (0, \infty) \) a continuous function. For any \(b > 0 \), let \(G(b) \) denote the area bounded by the x-axis, the lines \(x = 0, x = b \) and the curve \(y = f(x) \). If, is given by

\[
G(b) = \sqrt{b^2 + 1} - 1 \quad \text{for each } b > 0,
\]

determine the function \(f \).

5. Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Show that for every \(x \in [a, b] \),

\[
\int_{a}^{x} \left[\int_{a}^{u} f(t) \, dt \right] \, du = \int_{a}^{x} (x-u) f(u) \, du.
\]

6. Integration by inverse substitution:

Let \(f : [a, b] \to \mathbb{R} \) and \(\phi : [c, d] \to [a, b] \) be such that the following are satisfied:

(i) \(f \) is continuous.

(ii) \(\phi \) is onto.

(iii) \(\phi' \) exists, is continuous on \([c, d] \) and \(\phi'(y) \neq 0 \) for all \(y \in [c, d] \).

Show that \(\phi \) is one-one, and hence \(\phi^{-1} \) exists. Using direct substitution for \(\phi \), show that

\[
\int_{a}^{b} f(x) \, dx = \int_{\alpha}^{\beta} f(\phi(y)) \phi'(y) \, dy,
\]

where \(\alpha = \phi^{-1}(a) \) and \(\beta = \phi^{-1}(b) \).

7. Using direct/indirect substitution, compute the following:

(i) \[
\int \frac{2x}{\sqrt{9 + x^2}} \, dx,
\]

(use \(u = 9 + x^2 \)).

(ii) \[
\int \frac{dx}{\sqrt{9 + x^2}},
\]

(use inverse substitution).
Recap
In this section you have learnt the following

- Integration by parts formula
- Integration by substitution
- Leibnitz's formula for differentiating integral with variable limits

$x = 3 \tan \phi$