Exercise 1

Calculate the solid angle subtended by an octant of a sphere at the centre of the sphere.

(Ans. $\frac{\pi}{2}$)
The flux per unit solid angle is known as the intensity.

Exercise 3

Find the electric field both inside and outside a spherical shell of radius carrying a uniform charge.

Exercise 4

Find the electric field in the region between two infinite parallel planes carrying charge densities $+\sigma$ and $-\sigma$.

Exercise 5

Find the electric field both inside and outside a spherical shell of radius R carrying a uniform charge Q.
Exercise 6

Find the electric field both inside and outside a long cylinder of radius R carrying a uniform volume charge density ρ.

(Hint: Take the gaussian surface to be a finite concentric cylinder of radius r (with $r < R$ and $r > R$), as shown)

Exercise 7

A very long cylinder carries a charge density $\rho = kr$, where r is the distance from the axis of the cylinder. Find the electric field at a distance $r < R$.

(Ans. $\left(1/3\epsilon_0\right)kr^2\hat{r}$)

Exercise 8

A charge Q is located at the center of a cube of side a. Find the flux through any of the sides.

(Ans. $Q/6\epsilon_0$)