Exercise 1

An n-type semiconductor has a graded impurity concentration along the x-axis given by $N_d = 10^{22} - 10^{24}x$ per m3. Find the electric field at $x = 0$ at room temperature.

(Ans. 2.6 V)

Exercise 2

(i) For the semiconductor in the above exercise, calculate the diffusion coefficient at 300 K if the electron mobility is 1500 cm2/V-s.
(ii) Calculate the diffusion current density. Explain the direction of diffusion current.
(Ans. (i) 3.9×10^{-3} m2/s (ii) 624 A/m2)

(Hint: Use Einstein relation to find D_n)