Literature Survey using scopus™
NPTEL Course Module

G. Phanikumar
Department of MME, IIT Madras
Disclaimer

✧ This module is one of the many to illustrate usage of different online tools for literature survey. In this module, Scopus™ is being demonstrated.

✧ This module is not authorized by Elsevier™ and viewers are advised to check with their librarian for guidance on applicable restrictions, licenses and copyrights.

✧ Scopus™, Elsevier™ are trademarks of RELX ™ Group

✧ For simplicity, the ™ symbol is being omitted for the rest of the presentation.
Check list before you start

- Ask your librarian if you have a subscription for Scopus
- If yes, is the access via IP address or roaming login?
- If access is through IP, what is the proxy you need to go through while using your browser? Does the proxy need authentication? If yes, can you get one for yourself?
- If access is through roaming login, can you get the username and password for your use?
URL – open in a new tab in your browser

http://www.scopus.com/

In case the URL has moved to a different location, do an internet search of Elsevier, Scopus etc. to pick the correct URL
If you do not have access

Scopus

Login Required to Access Scopus

You are outside your institution’s network. To access Scopus consider the following options:

• **Athens and Shibboleth (Institutional)** users please [login here](http://www.scopus.com/standard/m). You may need to contact your institution’s Scopus administrator (e.g. librarian) to have remote access enabled for your account.
• If you have previously registered with Scopus or ScienceDirect and your account is validated for remote access, you can [login with your username and password](http://www.scopus.com/standard/m).
• If your account is not validated for remote access, you may need to contact your institution’s Scopus administrator (e.g. librarian) to have remote access enabled for your account.
• Alternatively, you may be able to gain access through your library’s website or institution’s VPN. For more details on available options, you may need to contact your institution’s Scopus administrator (e.g. librarian).
• Although institutional access is required to fully benefit from Scopus, just go to [Author Preview](http://www.scopus.com/standard/m) and test us by finding millions of available author details.

New to Scopus? Learn more about the world’s largest abstract and citation database.

If you need further assistance, please [contact our support team](http://www.scopus.com/standard/m).
If you have access

The Cited Reference Expansion project hits milestone: 5M records added.
Check list if you have access

- Register yourself and obtain a login and password on Scopus. Prefer your official email address for your profile.
- Keep the credentials handy and login to the Scopus portal.
- Once logged in, you can save your searches and search history.
Register yourself on the portal

Fill in the details here and click on the button Register.
Login to the site

Login using your Scopus credentials.
Keyword based search

- Choose alternate keywords with “OR” combination
- Choose the fields carefully: Article Title, Abstract, Keywords, Authors, First Author, Source Title, Article Title, Abstract, Keywords, Affiliation (Name, City, Country), Language, ISSN, DOI, References, Conferences, etc.
- Choose the timespan:
 - Published from YYYY/All Years to YYYY/Present
- Pick the Subject Areas as appropriate
- Use advanced search features to construct a search string combining different fields, values and Boolean operators / parentheses.
Looking at the search results

- Date (latest on top) : What is the latest in this area?
- Date (oldest on top) : What are the early publications in this area?
- Cited by (highest on top) : What are the most referred publications in this area?
- Relevance – What publications match the search criteria closest?
- First Author – A to Z / Z to A
- Source Title – Sorted according to the source of the publication
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Journal</th>
<th>Source ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical alloying and milling</td>
<td>Suryanarayana, C.</td>
<td>2001</td>
<td>Progress in Material Science</td>
<td>2190</td>
</tr>
<tr>
<td>Nanometre diameter fibres of polymer, produced by electrospinning</td>
<td>Renekar, D.H., Chun, I.</td>
<td>1996</td>
<td>Nanotechnology</td>
<td>2190</td>
</tr>
<tr>
<td>The effect of processing variables on the morphology of electrospun nanofibers and textiles</td>
<td>Deitzel, J.M., Kleinmeyer, J., Harris, D., Beck Tan, N.C.</td>
<td>2001</td>
<td>Polymer</td>
<td>1416</td>
</tr>
</tbody>
</table>
Collecting the reference items

◊ Under each method of sorting the search results, “select” those you feel are important for your literature survey by “checking the box” against those items.
◊ Click on the button “Save to list” to add these to your list.
◊ “Enter name of a new list” if you wish to create a new name of this list. Else, add them to an existing list by picking it from the drop down menu below.
◊ The number of items added to your list are shown in a box along with a link to “View or manage your saved lists”.
◊ Once you are done collecting, click on the link “View or manage your saved lists” to proceed to the 3 step process of collecting the data.
 ◊ Step 1: Select records (within this Marked List – usually all)
 ◊ Step 2: Select content (choose abstract also, helps in identifying which publications to find the full text of)
 ◊ Step 3: Select destination (choose Save to EndNote online)
Click on the name of the list you just created and added selected publications to.
1. Click here to select all the items
2. Click here to export the selected items
3. Select BibTeX format
4. Choose Citations and abstract information
4. Click on Export button
Save the list and export

✧ Click on the name of the list to view all the items you selected and saved.
✧ Click on the checkbox at the top of the first column of all the items to select all the items.
✧ Click on the link “Export” to open the pop-up dialogue.
✧ Choose “BibTeX” format, “Citations and Abstracts” and click on the button “export” to save the results as a file named “scopus.bib”.
✧ Go to your Downloads folder to rename the file to something meaningful, say, after the name of the list you had in your profile on scopus itself.
abstract={Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from blended elemental or prealloyed powders. The non-equilibrium phases synthesized include supersaturated solid solutions, metastable crystalline and quasicrystalline phases, nanostructures, and amorphous alloys. Recent advances in these areas and also on disordering of ordered intermetallics and mechanochemical synthesis of materials have been critically reviewed after discussing the process and process variables involved in MA. The often vexing problem of powder contamination has been analyzed and methods have been suggested to avoid/minimize it. The present understanding of the modeling of the MA process has also been discussed. The present and potential applications of MA are described. Wherever possible, comparisons have been made on the product phases obtained by MA with those of rapid solidification processing, another non-equilibrium processing technique. © 2001 Elsevier Science Ltd. All rights reserved.},
document_type={Review},source={Scopus},
}

abstract={Amorphous alloys exhibiting a wide supercooled liquid region above 100 K were found to form in a compositional range from 0 to 3%Co, 0 to 15%Ni and 10}
@ARTICLE{Suryanarayana20011,
author={Suryanarayana C.},
title={Mechanical alloying and milling},
journal={Progress in Materials Science},
year={2001},
volume={46},
number={1-2},
pages={1-184},
doi={10.1016/S0079-6425(99)00010-9},
note={cited By 9761},
url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0034742774&partnerID=40&md5=0e69be555d3963d347cc70f77a2ed11},
affiliation={Department of Metallurgical Eng., Colorado School of Mines, Golden, CO 80401-1887, United States},
abstract={Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and re-welding of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from blended elemental or prealloyed powders. The often vexing problem of powder contamination has been analyzed and methods have been suggested to avoid/minimize it. © 2001 Elsevier Science Ltd. All rights reserved.},
document_type={Review},
source={Scopus},
}

@ARTICLE{Zhang199111008,
author={Zhang Tao and Incuc Akihiko and Masumoto Tsuyoshi},
title={Amorphous Zr-Al-TM (TM-Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K},
document_type={Review},
source={Scopus},
}

UTF-8 Normal Mode
How does this file look like?

In TeXworks:

@ARTICLE{Suryanarayana20011,
author = {Suryanarayana C.},
title = {Mechanical alloying and milling},
journal = {Progress in Materials Science},
year = {2001},
volume = {46},
number = {1-2},
pages = {1-184},
doi = {10.1016/S0079-6425(99)00010-9},
ote = {cited By 3961},
url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0037427774&partnerID=8&md5=50d5d5b55c39d304170707a2d11},
affiliation = {Department of Metallurgical Eng., Colorado School of Mines, Golden, CO 80401-1887, United States},
abstract = {Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and reballing of powder particles in a high-energy ball mill. Originally developed to produce oxide-dispersion strengthened (ODS) nickel- and iron-base superalloys for applications in the aerospace industry, MA has now been shown to be capable of synthesizing a variety of equiatomic and non-equiatomic alloy phases starting from blended elemental or prealloyed powders. The non-equiatomic phases synthesized include supersaturated solid solutions, metastable crystalline and quasicrystalline phases, nanocrystallites, and amorphous alloys. Recent advances in these areas and also on disordering of ordered intermetallics and mechanochemical synthesis of materials have been critically reviewed after discussing the process and parameters involved in MA. The often vexing problem of powder contamination has been analyzed and methods have been suggested to avoid/minimize it. The present understanding of the modeling of the MA process has also been discussed. The present and potential applications of MA are described. Wherever possible, compositions have been noted on the product phases obtained by MA with those of rapid solidification processing, another non-equiatomic processing technique. © 2001 Elsevier Ltd. All rights reserved.},
document_type = {Review},
source = {Scopus},
}

@ARTICLE{Zhang1991YOS,
author = {Zhang, Teo and Tsuchiyu, Akio and Masumoto, Tetsuji},
title = {Amorphous Zr-Ni-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K},
journal = {Materials Transactions, JIM},
year = {1991},
volume = {32},
number = {11},
pages = {1521-1523},
ote = {cited By 745},
url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0029055846&partnerID=8&md5=54d52a183c5c41ee18d75d0e4e4a4},
affiliation = {Tohoku Univ., Sendai, Japan},
abstract = {Amorphous alloys exhibiting a wide supercooled liquid region above 100 K were found to form in a compositional range from 0 to 3%Co, 0 to 15%Ni and 10% to 23%Cu in Zr65Al47Si2.5(Cu0.1-x, Ni0.9x)25 system by melt spinning. The temperature span ΔTm (°K) between glass transition temperature (Tg) and crystallization temperature (Tc) reaches as large as 127 K for}
This is how the file looks like in JabRef

<table>
<thead>
<tr>
<th>#</th>
<th>Ranking</th>
<th>Entrytype</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Bibtextkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Article</td>
<td>A</td>
<td>PRINCIPLES OF MELT-SPINNING</td>
<td>1967</td>
<td>Man-Made Fibers, Sci... ZABICKIA1967169</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Article</td>
<td>Akihisa et al.</td>
<td>Zr-Al-Ni amorphous alloys with high glass transition temps...</td>
<td>1990</td>
<td>Materials Transactions, J. Inoue1990177</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Article</td>
<td>C.</td>
<td>Mechanical alloying and milling</td>
<td>2001</td>
<td>Progress in Materials Sci... Suryanarayana200111</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Article</td>
<td>K. et al.</td>
<td>Structural formation during melt spinning process</td>
<td>1968</td>
<td>Kolloid-Zeitschrift & Zeits... Katayama1968128</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Article</td>
<td>W. et al.</td>
<td>Theory of microstructural development during rapid soil...</td>
<td>1986</td>
<td>Acta Metallurgica Kurz1986923</td>
<td></td>
</tr>
</tbody>
</table>

Article (Inoue1990177)

Akihisa, I., Tao, Z. & Tsuyoshi, M.
Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region
Materials Transactions, JIM, 1990, 37, 177-183

Abstract: Amorphous Zr-Al-Ni alloys exhibiting a wide temperate region of supercooled liquid state and a high reduced glass transition temperature (Tg/Tm) were formed over a composition range from 0 to 37 at% Al and 3 to 67% Ni by melt spinning. The temperature span ΔTx (=Tx - Tg) between Tg and crystallization temperature (Tx) reaches as large as 77 K for Zr60Al15Ni25. The Tg/Tm is also as high as 0.64 in the vicinity of Zr60Al20Ni20 and their Zr-Al-Ni alloys are concluded to have a large glass-forming capacity. The Tx and hardness (Hv) increase with increasing Al and Ni contents in the range of 860 to 860 K and 400 to 720, respectively, and the tensile strength also has a similar compositional dependence in the range of 1350 to 1720 MPa. The compositional effect on Tx and Hv was presumed to originate from the variation of the atomic configuration which reflects the equilibrium compounds, because of the similarity in the compositional dependence among Tx, Hv and the melting temperature of the compounds. The high thermal stability of the
How to edit this .bib file?

- Use a Reference Manager like JabRef (opensource and free)
- Spreadsheet like appearance
- Possibility to add notes, split and merge similar files, export to different formats
- The file resides on your desktop – go through the items at your pace, offline, identify those you need to have the full text of and so on.
Why export bibliographic data?

- We need our literature survey results in BibTeX format (.bib file) for use in LaTeX documents to typeset an article and cite the references.
- We can use JabRef to convert BibTeX data into XML format (.xml file) for use in Microsoft Office™ to typeset an article and cite the references.
End of Module