Assignment 9: MATLAB code for BER generation of Spread Spectrum QPSK system over fading channel.

Due date: Max. marks: 20

Write a MATLAB code to generate Bit Error Rate (BER) vs Bit-Energy-to-Noise-Power-Spectral-Density ratio (E_b/N_0) plot for Spread Spectrum Quadrature Phase Shift Keying (QPSK) system over Rayleigh fading channel (averaged over at least 1000 iterations). Assume system employs a Hadamard sequence of length 4 for spreading data. Fig. 1 depicts a QPSK Spread Spectrum modulator and demodulator system. Referring to the same, answer the following:

Important Note: Refer to the equalizer and channel generation portions of the code provided in tutorial 7 in Week 9 content, and use the same to solve this assignment.

Figure 1: QPSK spread spectrum modulator and demodulator system with fading channel.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mathematical notation</th>
<th>MATLAB variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-phase bipolar data</td>
<td>i</td>
<td>l_{data}</td>
</tr>
<tr>
<td>Quadrature bipolar data</td>
<td>q</td>
<td>Q_{data}</td>
</tr>
<tr>
<td>Baseband complex data</td>
<td>s_s</td>
<td>base_{sig}</td>
</tr>
<tr>
<td>Spreading code</td>
<td>c</td>
<td>$\text{spread}_{\text{code}}$</td>
</tr>
<tr>
<td>Transmit spread signal</td>
<td>s</td>
<td>tx_{data}</td>
</tr>
<tr>
<td>Number of multipath components</td>
<td>l</td>
<td>$\text{no}_{\text{multipath}}$</td>
</tr>
<tr>
<td>Multipath delay index vector</td>
<td>τ</td>
<td>tau</td>
</tr>
<tr>
<td>Decay parameter for channel</td>
<td>α</td>
<td>$\text{decay}_{\text{para}}$</td>
</tr>
<tr>
<td>Power delay profile vector</td>
<td>$P(\tau)$</td>
<td>PDP</td>
</tr>
<tr>
<td>Complex channel with Rayleigh amplitude and uniformly distributed phase</td>
<td>c_{amp}</td>
<td>$\text{Rayleigh}_{\text{amp}}$</td>
</tr>
<tr>
<td>Channel impulse response without normalization</td>
<td>c_{un}</td>
<td>$\text{imp}{\text{res}{\text{unnorm}}}$</td>
</tr>
<tr>
<td>Channel impulse response with normalization</td>
<td>c_{n}</td>
<td>imp_{res}</td>
</tr>
<tr>
<td>Channel power</td>
<td>P_{ch}</td>
<td>ch_{power}</td>
</tr>
<tr>
<td>Transmit spread signal after channel</td>
<td>s'</td>
<td>$\text{tx}{\text{data}{\text{ch}}}$</td>
</tr>
<tr>
<td>AWGN channel noise</td>
<td>n</td>
<td>n_{AWGN}</td>
</tr>
<tr>
<td>Received signal</td>
<td>r</td>
<td>rec_{data}</td>
</tr>
<tr>
<td>Despread signal</td>
<td>r_d</td>
<td>$\text{despread}_{\text{data}}$</td>
</tr>
<tr>
<td>Decoded in-phase data</td>
<td>\hat{i}</td>
<td>$\text{decod}{\text{sig}{I}}$</td>
</tr>
<tr>
<td>Decoded quadrature data</td>
<td>\hat{q}</td>
<td>$\text{decod}{\text{sig}{Q}}$</td>
</tr>
</tbody>
</table>

Table 1: Table of notations.

1. The corresponding multipath delay index vector can be generated using the MATLAB command:
 (2 marks)
 i. $\text{tau}=0:\text{no}_{\text{multipath}}$;
 ii. $\text{tau}=0:\text{no}_{\text{multipath}}-1$;
 iii. $\text{tau}=0:\text{no}_{\text{multipath}}+1$;
 iv. $\text{tau}=1:\text{no}_{\text{multipath}}-1$;

2. For a given decay parameter, the MATLAB command to generate exponential power delay profile of the channel is:
 (2 marks)
 i. $P_{\text{ch}}=1-\exp(-\text{decay}_{\text{para}}*\text{tau})$;
 ii. $P_{\text{ch}}=\exp(\text{decay}_{\text{para}}*\text{tau})$;
 iii. $P_{\text{ch}}=1-\exp(\text{decay}_{\text{para}}*\text{tau})$;
iv. \(\text{PDP} = \exp(-\text{decay_para} \times \text{tau}) \);

3. The MATLAB command to generate multipath channel components with Rayleigh distributed amplitude and uniformly distributed phase is:

(2 marks)

i. \(\text{Rayleigh_amp} = (1/\sqrt{2}) \times (\text{randn}(1, \text{no_multipath}) + j \times \text{randn}(1, \text{no_multipath})) \);

ii. \(\text{Rayleigh_amp} = (1/\sqrt{2}) \times (\text{rand}(1, \text{no_multipath}) + j \times \text{rand}(1, \text{no_multipath})) \);

iii. \(\text{Rayleigh_amp} = (1/\sqrt{2}) \times (\text{rand}(1, \text{no_multipath} - 1) + j \times \text{rand}(1, \text{no_multipath} - 1)) \);

iv. \(\text{Rayleigh_amp} = (1/\sqrt{2}) \times (\text{randn}(1, \text{no_multipath} - 1) + j \times \text{randn}(1, \text{no_multipath} - 1)) \);

4. The MATLAB command to generate channel impulse response (without normalization) is:

(2 marks)

i. \(\text{imp_res_unnorm} = \text{Rayleigh_amp} \times \text{PDP} \);

ii. \(\text{imp_res_unnorm} = \text{Rayleigh_amp} \times \sqrt{\text{PDP}} \);

iii. \(\text{imp_res_unnorm} = \text{Rayleigh_amp} \times \sqrt{\text{PDP}} \);

iv. \(\text{imp_res_unnorm} = \text{Rayleigh_amp} / \sqrt{\text{PDP}} \);

5. The MATLAB command to calculate the net power of the channel multipath components (of the channel generated in question no. 4) is:

(2 marks)

i. \(\text{ch_power} = \text{sum}((\text{imp_res_unnorm})^2) \);

ii. \(\text{ch_power} = \text{sum}(\text{abs(imp_res_unnorm)}) \);

iii. \(\text{ch_power} = \text{sum}(\text{abs(imp_res_unnorm})^2) \);

iv. \(\text{ch_power} = \text{sum}(\text{imp_res_unnorm}) \);

6. The effect of multipath channel on transmitted data \(s \) can be captured using MATLAB command:

(2 marks)

i. \(\text{conv(tx_data, imp_res)} \);

ii. \(\text{tx_data} \times \text{imp_res} \);

iii. \(\text{kron(tx_data, imp_res)} \);

iv. \(\text{tx_data} \times \text{imp_res} \);

7. For a decay parameter, \(\alpha = 1.2 \) and number of multipath components, \(l = 4 \), the BER vs EbNo (averaged over atleast 10000 iterations) plot is approximately:

(4 marks)
i.

![Graph of BER vs. Eb/No in dB for the first scenario. The y-axis represents BER on a logarithmic scale, ranging from 10^{-2} to 10^0. The x-axis represents Eb/No in dB, ranging from -2 to 12. The graph shows a decreasing trend as Eb/No increases.]

ii.

![Graph of BER vs. Eb/No in dB for the second scenario. The y-axis represents BER on a logarithmic scale, ranging from 10^{-4} to 10^0. The x-axis represents Eb/No in dB, ranging from -2 to 10. The graph shows a decreasing trend as Eb/No increases.]
iii.

iv.

[Graphs showing BER vs. Eb/No in dB for different ranges of Eb/No]
8. For a decay parameter, $\alpha=2.5$ and number of multi-path $l=4$, the BER vs EbNo (averaged over at least 10000 iterations) plot is approximately:

(4 marks)

i.

![Graph 1](image1)

ii.

![Graph 2](image2)