An introduction to Information Theory

Adrish Banerjee

Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh
India

July 18, 2016

Lecture #2B: Problem solving session-I
Problem # 1: Give examples of joint random variable X and Y such that

$$H(Y|X = x) < H(Y)$$
Conditional Entropy

Problem # 1: Give examples of joint random variable X and Y such that
\[
\begin{align*}
&\text{i) } H(Y|X = x) < H(Y) \\
&\text{ii) } H(Y|X = x) > H(Y)
\end{align*}
\]

Solutions: Suppose that the random vector $[X,Y,Z]$ is equally likely to take any of the following four values: $[0,0,0],[0,1,0],[1,0,0]$ and $[1,0,1]$.
Conditional Entropy

Problem # 1: Give examples of joint random variable X and Y such that

i) $H(Y|X = x) < H(Y)$

ii) $H(Y|X = x) > H(Y)$

Solutions: Suppose that the random vector $[X, Y, Z]$ is equally likely to take any of the following four values: $[0,0,0],[0,1,0],[1,0,0]$ and $[1,0,1]$. Then $P_X(0) = P_X(1) = 1/2$ so that $H(X) = H(1/2) = 1$ bit.

Note that $P_{Y/X}(0/1) = 1$ so that $H(Y/X = 1) = 0$.
Conditional Entropy

- **Problem # 1:** Give examples of joint random variable X and Y such that

 i) \(H(Y|X = x) < H(Y) \)

 ii) \(H(Y|X = x) > H(Y) \)

- **Solutions:** Suppose that the random vector \([X,Y,Z]\) is equally likely to take any of the following four values: \([0,0,0],[0,1,0],[1,0,0]\) and \([1,0,1]\).

 Then \(P_X(0) = P_X(1) = 1/2 \) so that \(H(X) = H(1/2) = 1 \) bit.

 Note that \(P_{Y/X}(0/1) = 1 \) so that \(H(Y/X = 1) = 0 \).

 Similarly, we have \(P_{Y/X}(0/0) = 1/2 \) so that

 \[
 H(Y/X = 0) = h(1/2) = 1 \text{ bit}
 \]

 Since \(P_Y(1) = 1/4 \), we have \(H(Y) = h(1/4) = 0.811 \text{ bits} \). Thus we have...
Problem # 1: Give examples of joint random variable X and Y such that
i) $H(Y|X = x) < H(Y)$
ii) $H(Y|X = x) > H(Y)$

Solutions: Suppose that the random vector $[X,Y,Z]$ is equally likely to take any of the following four values: $[0,0,0],[0,1,0],[1,0,0]$ and $[1,0,1]$.

Then $P_X(0) = P_X(1) = 1/2$ so that $H(X) = H(1/2) = 1$ bit.

Note that $P_{Y/X}(0/1) = 1$ so that $H(Y/X = 1) = 0$.

Similarly, we have $P_{Y/X}(0/0) = 1/2$ so that
$$H(Y/X = 0) = h(1/2) = 1 \text{ bit}$$

Since $P_Y(1) = 1/4$, we have $H(Y) = h(1/4) = 0.811$ bits. Thus we have
i) $H(Y|X = 1) < H(Y)$
Problem # 2: Give examples of joint random variable X, Y and Z such that

1) $I(X; Y|Z) < I(X; Y)$
Problem # 2: Give examples of joint random variable X, Y and Z such that

i) \(I(X; Y|Z) < I(X; Y) \)

ii) \(I(X; Y|Z) > I(X; Y) \)

Solutions: Let X, Y and Z form a Markov Chain.

\[
I(X; Y, Z) = I(X; Z) + I(X; Y|Z) \\
= I(X; Y) + I(X; Z|Y)
\]
Problem # 2: Give examples of joint random variable X, Y and Z such that

i) \(I(X; Y|Z) < I(X; Y) \)

ii) \(I(X; Y|Z) > I(X; Y) \)

i) Solutions: Let X, Y and Z form a Markov Chain.

\[
I(X; Y, Z) = I(X; Z) + I(X; Y|Z) \\
= I(X; Y) + I(X; Z|Y)
\]

We note that \(I(X; Z|Y) = 0 \), by Markovity, and \(I(X; Z) \geq 0 \). Thus,

\[
I(X; Y|Z) \leq I(X; Y)
\] (1)

ii) Let X and Y be independent fair binary random variables, and let \(Z = X + Y \).
Mutual Information

Problem # 2: Give examples of joint random variable X, Y and Z such that

i) \(I(X; Y|Z) < I(X; Y) \)

ii) \(I(X; Y|Z) > I(X; Y) \)

Solutions: Let X, Y and Z form a Markov Chain.

\[
I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y)
\]

We note that \(I(X; Z|Y) = 0 \), by Markovity, and \(I(X; Z) \geq 0 \). Thus,

\[
I(X; Y|Z) \leq I(X; Y)
\] \hspace{1cm} (1)

ii) Let X and Y be independent fair binary random variables, and let

\[
Z = X + Y.
\]

Then \(I(X; Y) = 0 \), but \(I(X; Y|Z) = H(X|Z) - H(X|Y, Z) = H(X|Z) = P(Z = 1)H(X|Z = 1) = \frac{1}{2} \text{bit} \).

Divergence

Problem # 3: Let \(P_X(X = 0) = P_X(X = 1) = 0.5 \),

\(Q_X(X = 0) = 0.25, Q_X(X = 1) = 0.75 \) and

\(R_X(X = 0) = 0.2, R_X(X = 1) = 0.8 \). Show that triangle inequality
does hold for divergence, i.e.

\[
D(P_X||R_X) > D(P_X||Q_X) + D(Q_X||R_X)
\]
Problem # 3: Let \(P_X(X = 0) = P_X(X = 1) = 0.5, \)
\(Q_X(X = 0) = 0.25, Q_X(X = 1) = 0.75 \) and
\(R_X(X = 0) = 0.2, R_X(X = 1) = 0.8. \) Show that triangle inequality
does hold for divergence, i.e.
\(D(P_X||R_X) > D(P_X||Q_X) + D(Q_X||R_X) \)

Solution:

\[
D(P_X||Q_X) = 0.5 \log \frac{0.5}{0.25} + 0.5 \log \frac{0.5}{0.75} = 0.208 \\
D(Q_X||R_X) = 0.25 \log \frac{0.25}{0.2} + 0.75 \log \frac{0.75}{0.8} = 0.011 \\
D(P_X||R_X) = 0.5 \log \frac{0.5}{0.2} + 0.5 \log \frac{0.5}{0.8} = 0.322
\]

Since, \(0.322 > 0.208 + 0.011 = 0.219, \) triangular inequality is not satisfied.
Problem # 4: Consider a discrete memoryless channel with inputs \(X \) and outputs \(Y \). The input \(X \) takes values from a ternary set with equal probability and it is known that the probability of error for the system is \(p \). Using Fano’s lemma, find a lower bound to the mutual information \(I(X; Y) \) as a function of \(p \).

Solutions: Mutual information can be written as

\[
I(X; Y) = H(X) - H(X|Y)
\]
Problem # 4: Consider a discrete memoryless channel with inputs X and outputs Y. The input X takes values from a ternary set with equal probability and it is known that the probability of error for the system is p. Using Fano’s lemma, find a lower bound to the mutual information $I(X; Y)$ as a function of p.

Solutions: Mutual information can be written as

$$I(X; Y) = H(X) - H(X|Y)$$

By Fano’s inequality, we get

$$H(X|Y) \leq H(P_e) + P_e \log(3 - 1) = H(p) + p$$

Thus

$$I(X; Y) \geq H(X) - H(p) - p = \log 3 - H(p) - p$$
Problem # 5: Let \((X, Y) \sim p(x, y) = p(x)p(y|x)\). the mutual information \(I(X; Y)\) is a concave function of \(p(x)\) for fixed \(p(y|x)\)

\[
I(X; Y) = H(Y) - H(Y|X) = H(Y) - \sum_x p(x)H(Y|X = x)
\]
Problem # 5: Let \((X, Y) \sim p(x, y) = p(x)p(y|x)\). the mutual information \(I(X; Y)\) is a concave function of \(p(x)\) for fixed \(p(y|x)\)

Solutions: To prove, we expand the mutual information

\[
I(X; Y) = H(Y) - H(Y|X) = H(Y) - \sum_x p(x)H(Y|X = x)
\]

If \(p(y|x)\) is fixed, then \(p(y)\) is a linear function of \(p(x)\).

Hence \(H(Y)\), which is a concave function of \(p(y)\), is a concave function of \(p(x)\).
Problem # 5: Let \((X, Y) \sim p(x, y) = p(x)p(y|x)\). the mutual information \(I(X; Y)\) is a concave function of \(p(x)\) for fixed \(p(y|x)\).

Solutions: To prove, we expand the mutual information

\[
I(X; Y) = H(Y) - H(Y|X) = H(Y) - \sum_x p(x)H(Y|X = x)
\]

If \(p(y|x)\) is fixed, then \(p(y)\) is a linear function of \(p(x)\).

Hence \(H(Y)\), which is a concave function of \(p(y)\), is a concave function of \(p(x)\).

The second term is a linear function of \(p(x)\). Hence, the difference is a concave function of \(p(x)\).