Sample and Hold Circuit

Switch \(ST \)

Vin \(\rightarrow \) V0

C

Initial condn: \(V_0 = 0 \)
and \(ST = 0 \) (open)

Vin is impressed and \(ST \) closes.

Capacitor charges towards \(Vin(t) \) value at \(t = t_1 \). Now \(ST \) opens.

Then \(V_{01} = V_c(t_1) = V_c(t_1) = V_m(t_1) \)

Till \(ST \) closes output is 'Held' to \(V_{01} \).

When \(ST \) closes, \(V_0 \) tries to follow \(Vin \) (with last initial condn.)

This we say 'Sampling'.
A simple S-H Circuit is

MOS Transistor in common gate mode acts like a Switch.

Alternate:

Input of OPAMP
Digital to Analog Converter
(D/A Converter or DAC)

Let's assume Digital word is in Binary Code corresponding to a N-bit binary code, we have Analog Voltage as V_0

$$V_0 = (2^{N-1}a_{N-1} + 2^{N-2}a_{N-2} + \cdots + 2a_2 + \frac{1}{2}a_1 + \frac{1}{2^{N-1}}a_0) V$$

$$= (a_{N-1} + \frac{1}{2}a_{N-2} + \cdots + \frac{1}{2^{N-2}}a_1 + \frac{1}{2^{N-1}}a_0) 2^{N-1} V$$

Course Name: Analog Circuits
Lecture No: 25
Instructor's Name: Prof. A. N. Chandorkar
DAC specifications

Typically, the output of DAC is a fraction \(F \) of \(V_{REF} \).

\[\text{Vout} = F \cdot V_{REF} \]

Word \(D \) is \(N \)-bit wide, then

No. of Input Combinations = \(2^N \)

A 4-bit DAC has \(2^4 = 16 \) Input Combinations

Clearly a 4-bit DAC has 4-bit Resolution, which means each input should have distinct Analog Output.
Ideal Transfer Characteristics for 3-bit DAC

1. Full Scale Voltage
 \[V_{FS} = \frac{2^N - 1}{2^N} V_{REF} \]
 \[= \frac{7}{8} V_{REF} \]

2. 1 LSB
 \[1 \text{ LSB} = \frac{V_{REF}}{2^N} \]
 \[= \frac{5}{8} \] 3-bit range

D word width 3-bit wide
Then \(F = \frac{D}{2^N} \)

If \(D \) is a bit wide, \(F = \frac{8}{2^4} = \frac{8}{16} = \frac{1}{2} \)

1000
\[
\downarrow \\
8
\]

Similarly 3-bit DAC, \(F = \frac{4}{2^3} = \frac{4}{8} = \frac{1}{2} \)

1

\[
\downarrow \\
(100)
\]

If \(V_{REF} = 5V \) then \(V_0 = \frac{1}{2} \times 5V = 2.5V \)

\[
\text{Resolution} = 2.5V
\]

\(i.e. \) each bit of 8-bit DAC (000, 001, ..., 111) is separated by 2.5V (for \(V_{REF} = 5V \))
DAC implementation

1 BIT N-1

0 BIT N-2

0 BIT 0

MSB

LSB

-VR (say 10V)

\[R \]

\[2R \]

\[4R \]

\[2^{N-1} R \]

I-V converter

Binary-Weighted DAC

Course Name: Analog Circuits
Lecture No.: 2.5
Instructor's Name: Prof. A. N. Chandorkar
R-2R DAC

\[V_0 = - \frac{Q_{out}}{R_2}, \quad I_{out} = \sum_{k=0}^{N-1} D_k \cdot \frac{V_{REF}}{2^{N-k-1}} \cdot \frac{1}{2R} \]
A to D Converters (ADCs)

(i) Counting ADC

(ii) Successive Approximation ADC

(iii) Flash ADC

(iv) Dual-Slope ADC / Single Slope

(v) Multi-step

(vi) Pipelined
Counting ADC

Clear/Reset

Clock CK

AND

Comparator

Vd

Binary Counter

Digital output

MSB

LSB

D/A converter

Analog Input

Va

Course Name: Analog Circuits
Lecture No: 25
Instructor's Name: Prof. A. N. Chandorkar
Flash ADC

\[V_{REF} \]

\[V_{2^{N-1}} \]

\[V_R \]

\[V_2 \]

\[V_1 \]

\[T_{C} \]

\[2^{N-1} \]

\[2^{N-2} \]

\[2^{N-1} \]

\[2 \]

\[1 \]

\[D_{N-1} \]

\[D_{N-2} \]

\[D_2 \]

\[D_1 \]

\[D_0 \]

Digital output
For 3-bit Flash ADC

Each Tap has voltage \(V_{\text{ref}} = \frac{R}{8R} V_{\text{REF}} = \frac{1}{8} V_{\text{REF}} \)

For \(V_{\text{REF}} = 5 \text{V} \), Each Tap has voltage \(\frac{5}{8} = 0.625 \text{V} \)

\(v_1 = 0.625 \text{V}, \quad v_2 = 1.25 \text{V}, \quad v_7 = \frac{7 \times 5}{8} = 4.375 \text{V} \)

Let us say \(V_{\text{IN}} = 3 \text{V} \)

Then \(\begin{array}{c}
 \text{Binary} \\
 0 \\
 1 \\
 2 \\
 3
\end{array} \begin{array}{c}
 \text{TC} \\
 0000 \\
 0001 \\
 0010 \\
 0011
\end{array} \)

\(\Rightarrow \begin{array}{c}
 \text{Encoded to Binary} \\
 100
\end{array} \)