Butterworth Filter

If \(H(s) \) is Transfer Function \(\frac{V_o(s)}{V_{in}(s)} \)
given by \(H(s) = \frac{A(s)}{B(s)} \)
And if this has only poles but no zeros \(A(s) \) cost = \(H_o \)
Then \(H(s) = \frac{H_o}{B(s)} \)
Then the \(F^{th} \)
\(B^2(\omega) = 1 + \epsilon^2 (\frac{\omega}{\omega_o})^{2F} \) is called
Butterworth Polynomial
The filters using Butterworth \(F^{th} \) are called
'Maximally Flat' kind, i.e. Ripple is v. low.
\[|H(j\omega)| = \frac{H_0}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_0}\right)^2}} \]

At \(\omega = \omega_0 \), \(H(j\omega) = \frac{H_0}{\sqrt{1 + \varepsilon^2}} \)

\varepsilon \) gives measure of Maximum Transmission \(A_{\text{max}} \)

\[A_{\text{max}} = 20 \log \left(1 + \varepsilon^2\right)^{1/2} \]

\(\gamma \) \(\varepsilon = \sqrt{10^{A_{\text{max}}/10} - 1} \) gives Max. Transmission

If \(\varepsilon = 1 \)

\[\left| \frac{H(j\omega)}{H_0} \right|^2 = \frac{1}{2} \quad \Delta \text{A}_{\text{max}} = 0 \quad \text{Passband terminates at} \ \omega = \omega_0 \]
At \(\omega = \omega_0 \),

\[
\left| \frac{H(j\omega)}{H_0} \right| = -20 \log \left[\frac{1}{\sqrt{1 + e^{2(\omega/\omega_0)^2N}}} \right]
\]

\[
= 10 \log \left[1 + e^{2 \left(\frac{\omega}{\omega_0} \right)^2N} \right]
\]

\therefore \text{ Larger } N \text{ means larger attenuation.}
Example: For a LP Butterworth filter, we need attenuation of 40 dB and at $\frac{\omega}{\omega_0} = 2$. We use $\epsilon = 1$.

Then

$$|\frac{H(j\omega)}{H_0}|^2 = \frac{1}{1 + (\frac{\omega}{\omega_0})^{2N}}$$

Given $\frac{H(j\omega)}{H_0} = \frac{1}{100} = 0.01$

$$10^{-4} = \frac{1}{1 + 2^{2N}} \Rightarrow 2^{2N} = 10^4 - 1 \approx 10^4$$

$$2N \log_2 2 = 4 \Rightarrow N = \frac{2}{\log_2 10} = \frac{2}{0.3010} \approx 6.64 \approx 7$$
Chbyshev Polynomial

\[C_n(\omega) = \cos(N \cos^{-1}(\frac{\omega}{\omega_0})) = \cosh(N \cosh^{-1}(\frac{\omega}{\omega_0})) \quad \omega \geq \omega_0 \]

Given \[\left| \frac{H(j\omega)}{H_0} \right|^2 = (\text{40 dB})^{-1} = 10^{-4} \]

\[10^{-4} = \frac{1}{1 + (0.5084)^2 C_N^2(2)} \]

\[C_N^2(2) = \frac{10^4 - 1}{(0.5084)^2} = 3.86 \times 10^4 \]

\[C_N(2) = \sqrt{3.86 \times 10^2} \]

\[\omega = 196.5 = \cosh(N \cosh^{-1}(2)) \]

Solving, \[N = 4.53 \approx 5 \]
The ripple frequency ω_c is related to `-3db' cut-off frequency ω_0 as

$$\omega_c = \omega_0 \cosh \left(\frac{1}{N} \cosh^{-1} \frac{1}{\xi} \right)$$

For 1db ripple with say $N=5$, $\omega_H = 1.03 \omega_c$

Example: $\gamma = 1$db, so $\frac{\omega}{\omega_0} = 2$; Attenuation is 40 db.

Since $\gamma = 1$db, $\xi = 0.5089$

$$\therefore \left| \frac{H(j\omega)}{H_0} \right|^2 = \frac{1}{1 + (0.5089)^2 C_n^2 \gamma^2}$$
Chebyshev filters are 'All Pole' filters and has larger 'Ripple' but sharper fall for lower Number of Sections \(N \) compared to Butterworth.

\(N \) represents number of poles.

Parameter \(\varepsilon \) is related to Passband Ripple \(\gamma \) in \(\text{d} \text{B} \) by

\[
\varepsilon^2 = 10^{\gamma/10} - 1
\]

For 0.5 dB Ripple \((\gamma = 0.5) \), \(\varepsilon = 0.3493 \)

\(\varepsilon \) for 1.0 dB Ripple \((\gamma = 1.0) \), \(\varepsilon = 0.5089 \)
The Chebyshev Filters

If the Transfer F^n has the form as:

$$|H(\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 \cos^2 \left[N \cos^{-1} \left(\frac{\omega}{\omega_0} \right) \right]}} \quad \text{for} \quad \omega \leq \omega_0$$

$$= \frac{1}{\sqrt{1 + \epsilon^2 \cosh^2 \left[N \cosh^{-1} \left(\frac{\omega}{\omega_0} \right) \right]}} \quad \text{for} \quad \omega \geq \omega_0$$

Then Transfer F^n represents Chebyshev Function
\[\frac{\omega_H}{\omega_C} = \cosh\left(\frac{1}{2}\right) \cosh^{-1} \frac{1}{0.5089} \]

\[= 1.03 \]

Clearly we have a sharper fall at \(\omega_H \) to \(\omega_C \) with \(N = 5 \) and \(\gamma = 1.0 \) dB.
Butterworth Polynomial

<table>
<thead>
<tr>
<th>n</th>
<th>Factors of polynomial B_n(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((s + 1))</td>
</tr>
<tr>
<td>2</td>
<td>((s^2 + 1.414s + 1))</td>
</tr>
<tr>
<td>3</td>
<td>((s + 1)(s^2 + s + 1))</td>
</tr>
<tr>
<td>4</td>
<td>((s^2 + 0.765s + 1)(s^2 + 1.848s + 1))</td>
</tr>
<tr>
<td>5</td>
<td>((s + 1)(s^2 + 0.618s + 1)(s^2 + 1.618s + 1))</td>
</tr>
<tr>
<td>6</td>
<td>((s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1))</td>
</tr>
<tr>
<td>7</td>
<td>((s + 1)(s^2 + 0.444s + 1)(s^2 + 1.247s + 1)(s^2 + 1.802s + 1))</td>
</tr>
<tr>
<td>8</td>
<td>((s^2 + 0.399s + 1)(s^2 + 1.11s + 1)(s^2 + 1.663s + 1)(s^2 + 1.962s + 1))</td>
</tr>
</tbody>
</table>

Chebyshev Polynomial

- **0.5-dB ripple \(\varepsilon = 0.3493 \)**

<table>
<thead>
<tr>
<th>n</th>
<th>Factors of polynomial C_n(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((s + 1.863))</td>
</tr>
<tr>
<td>2</td>
<td>((s^2 + 1.425s + 1.516))</td>
</tr>
<tr>
<td>3</td>
<td>((s + 0.626)(s^2 + 0.626s + 1.142))</td>
</tr>
<tr>
<td>4</td>
<td>((s^2 + 0.351s + 1.064)(s^2 + 0.845s + 0.356))</td>
</tr>
<tr>
<td>5</td>
<td>((s + 0.362)(s^2 + 0.224s + 1.036)(s^2 + 0.586s + 0.477))</td>
</tr>
<tr>
<td>6</td>
<td>((s^2 + 0.1556s + 1.024)(s^2 + 0.414s + 0.5475)(s^2 + 0.5796s + 0.157))</td>
</tr>
<tr>
<td>7</td>
<td>((s + 0.2522)(s^2 + 0.1014s + 1.015)(s^2 + 0.3194s + 0.6657)(s^2 + 0.4616s + 0.2539))</td>
</tr>
<tr>
<td>8</td>
<td>((s^2 + 0.0872s + 1.012)(s^2 + 0.2494s + 0.7413)(s^2 + 0.3718s + 0.3872)(s^2 + 0.4386s + 0.08005))</td>
</tr>
</tbody>
</table>

- **1.0-dB ripple \(\varepsilon = 0.5089 \)**

<table>
<thead>
<tr>
<th>n</th>
<th>Factors of polynomial C_n(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((s + 1.965))</td>
</tr>
<tr>
<td>2</td>
<td>((s^2 + 1.098s + 1.103))</td>
</tr>
<tr>
<td>3</td>
<td>((s + 0.494)(s^2 + 0.494s + 0.994))</td>
</tr>
<tr>
<td>4</td>
<td>((s^2 + 0.279s + 0.987)(s^2 + 0.674s + 0.279))</td>
</tr>
<tr>
<td>5</td>
<td>((s + 0.289)(s^2 + 0.179s + 0.988s + 0.468s + 0.429))</td>
</tr>
<tr>
<td>6</td>
<td>((s^2 + 0.1244s + 0.9907)(s^2 + 0.3998s + 0.3577)(s^2 + 0.4642s + 0.1247))</td>
</tr>
<tr>
<td>7</td>
<td>((s + 0.2054)(s^2 + 0.0914s + 0.9927)(s^2 + 0.2562s + 0.6535)(s^2 + 0.3702s + 0.2304))</td>
</tr>
<tr>
<td>8</td>
<td>((s^2 + 0.07s + 0.9942)(s^2 + 0.1994s + 0.7236)(s^2 + 0.2994s + 0.3408)(s^2 + 0.3518s + 0.0702))</td>
</tr>
</tbody>
</table>
Sallan-Key Low Pass Section

Non Inverting

Inverting
Creation of a Real Single Pole

\[\frac{V_o}{V_{in}} = H(s) = \frac{1}{1+RCS} = \frac{1}{1+s/(1/RC)} \rightarrow \text{NonInv.} \]

\[\frac{V_o}{V_{in}} = -\left(\frac{R_2}{R_1}\right) \cdot \frac{1}{1+s/(1/RC)} \rightarrow \text{Inverting} \]
Stability: Revisit

We have \(A \beta = \text{Loop Gain} = \frac{A}{1/\beta} \)

\[\therefore 20 \log |A\beta| = 20 \log A - 20 \log (1/\beta) \]

If \(\phi < -180^\circ \) Stable