Objectives

In this course you will learn the following
- Why polysilicon prefered over aluminium as gate material?
- Channel stopper Implant
- Local Oxidation of silicon (LOCOS)

11.1 Why polysilicon prefered over aluminium as gate material?

Because-

1. **Penetration of silicon substrate**: If aluminium metal is deposited as gate, we can't increase the temperature beyond 500 degree celcius due to the fact that aluminium will then start penetrating the silicon substrate and act as p-type impurity.

2. **Problem with non-self alignment**: In case of aluminium gate, we have to first create source and drain and then gate implant. We can't do the reverse because diffusion is a high temperature process. And this creates parasitic overlap input capacitances \(C_{gd}\) and \(C_{gs}\) (figure 11.11). \(C_{gd}\) is more harmful because it is a feedback capacitance and hence it is reflected on the input magnified by \((k+1)\) times (recall Miller's theorem), where \(k\) is the gain. So if aluminum is used, the input capacitance increases unnecessarily which further increases the charging time of the input capacitance.
Therefore output doesn't appear immediately. If poly-silicon is used instead, it is possible to first create gate and then source & drain implant, which eliminates the problem of overlap capacitances C_{gd} and C_{gs}.

Resistivity of poly-silicon is 10^8 ohm/cm. So we need to dope polysilicon so that it resembles a metal like Al and its resistance is reduced to 100 or 300 ohm (although its still greater than Al).

Time for charging capacitance varies as negative exponential of $(RC)^{-1}$ where R and C are resistance and capacitance of the device. As we know the resistance is directly proportional to the length, so poly-silicon length should be kept small so that the resistance is not large, otherwise the whole purpose of decreasing C (hence the time constant RC) will be nullified.

11.2 Channel stopper Implant

As we know millions of transistors are fabricated on a single chip. To separate (insulate) these from each-other, we grow thick oxides (called *field oxides*). So, at very high voltages, inversion may settle in the region below the field oxide also, despite the large thickness of these oxides.

![Figure 11.21: channel stopper implant before field oxide region is grown (yellow color region)](image)

To avoid this problem, we do an implant in this region before growing the field oxide layer so that threshold voltage for this region is much greater than that for the desired active transistor channel region. This implant layer is called **channel stopper implant**. (as shown in figure 11.21)

11.3 Local Oxidation of Silicon (LOCOS)

![Figure 11.31: Formation of LOCOS Creation of LOCOS:](image)

During etching, anything irregular becomes more irregular. So we grow oxide fields 50% above and 50% below the wafer. This is called LOCal Oxidation of Silicon (LOCOS).
0.45 mU of silicon, when oxidized, becomes 1 mU of SiO₂ because of change in density. When field oxides are grown, there is an encroachment of the oxide layer in the active transistor region below the gate oxide, because of the affinity of the SiO₂ gate oxide for oxygen. The resulting structure resembles a bird’s beak (as shown in figure 11.32). This affects the device performance.

If we use Si₃N as the gate dielectric, it will not let oxygen pass through. But due to mismatch of the thermal coefficients of Si and Si₃N₄, hence the resulting stress produces a nonplanar structure called bird’s crest (as shown in figure 11.33).

The thermal coefficients of Si and SiO₂ match. So when Si₃N₄ is used as the gate dielectric, we first grow a thin oxide layer underneath. The stress, which would otherwise be generated on the account of the difference in the thermal coefficients of Si and SiO₂ is now reduced. Since SiO₂ is now there, bird’s beak will be formed.

Recap

In this lecture you have learnt the following
- Why polysilicon prefered over aluminium as gate material?
- Channel stopper Implant
- Local Oxidation of silicon (LOCOS)

Congratulations, you have finished Lecture 11.