LEAKAGE CURRENT
CONTROL
BY
CIRCUIT TECHNIQUES
DVTS

Dynamic Voltage & Threshold Scaling

DVTS is improved version of DVS as it can be achieved at most technology nodes (scaling)
DVS

We have a Single Loop here.

V_{dd} IS ADJUSTED FOR SPEED PERFORMANCE

VOLTAGE - FREQUENCY RELATION STORED IN LOOK-UP Table

"MOST COMMONLY USED TECHNIQUE"
(b) DVC gets this information and which then allows V_{dd} to regulate. Condition that this meets critically path delay

(c) Delay is fed back to DFC. Two loops achieve stable values for V_{dd} and f
Two closed-loops in DVFS

1. Dynamic Voltage Control → DVC

2. Dynamic Frequency Control → DFC

Steps in Control:

a. DFC monitors chip activity

⇒ decides frequency to work at
'Dynamic Voltage and Frequency Scaling'

DVFS

We have \(P_{\text{dynamic}} \propto V_{\text{DD}}^2 \propto f \)

Reducing \(V_{\text{DD}} \) => \(P_{\text{dynamic}} \) REDUCES

\(\Rightarrow \) REDUCES \(P_{\text{LEAKAGE}} \)

AS \(V_{\text{DD}} \downarrow \) reduces \(V_{\text{TH}} \) through Change in DIBL
ADAPTIVE BIASING
VARIABLE VTH CMOS

\[\text{(VTCMOS)} \]

[A] ACTIVE MODE \rightarrow BACK-BIAS
TRANSISTORS HAVE LOW VTH.

[B] 'OFF STAND-BY' \rightarrow BACK-BIAS
SET TO HIGH
REVERSE BIAS
TRANSISTORS ARE NOW HAVING HIGHER VTH \Rightarrow LOWER LEAKAGE
IN 'OFF' MODE SL = 1

MP AND MN ARE OFF WITH LOWER LEAKAGE WITH ADDITIONAL SERIES HIGH V_{TH} TRANSISTORS

DISADVANTAGES

1. LARGE AREA

2. SLOWER PERFORMANCE
MULTI THRESHOLD-VOLTAGE CMOS (MTCMOS)

AT $SL = 0$ (Active Mode)
- MP - ON
- MN - ON

SLEEP TRANSISTORS ARE LARGE SIZE
HIGH V_{TH} ONES

"We create V_{DDV} & V_{SSV}"
MULTIPLE BODY BIAS

Substrate Bias Changes \(V_{th} \)

\[
V_{th}(V_{SB}) = V_{TO} + \gamma \left[(V_{SB} + 2\phi_F)^{\frac{1}{2}} - (2\phi_F)^{\frac{1}{2}} \right]
\]

\(\gamma = \frac{[2K_S\varepsilon_0qN_B]^{\frac{1}{2}}}{\frac{C_{ox}}{C_{ox}}} \) = Body Bias Coeff.

Applying Appropriate Body Bias to Various Transistors, Multiple \(V_{th} \) Transistors are Created.
2(b) GATE-OXIDE CHANGE LEADS TO
CHANGE IN C_{ox}.

$V_{th} \propto t_{ox}$

ASSIGN LOWER V_{th} TO
TRANSISTORS IN CRITICAL PATH
OTHER TRANSISTORS HAVE
HIGHER V_{th} LEADING TO LOWER
SUB-THRESHOLD CURRENTS.
2. MULTIPLE \(V_{TH} \) TECHNIQUE

(a) CHANNEL DOING VARIATES FOR DIFFERENT \(V_{TH} \) TRANSISTORS

\[
V_{TH} = \phi_{MS} \pm 2\phi_F - \frac{Q_{ox}}{C_{ox}} - \frac{Q_B}{C_{ox}}
\]

\(\phi_{MS} = \text{METAL-SEMICONDUCTOR WORK FUNCTION DIFFERENCE} \)

\(\phi_F = \frac{kT}{e} \ln \frac{N_B}{N_i} \), \(N_B \) - SUBSTRATE DOPING
Q_{ox} is fixed positive charge density

$C_{ox} = \frac{E_{ox}}{t_{ox}}$, \(t_{ox} \) - Oxide Thickness
\(E_{ox} \) - Oxide Permittivity

$Q_B = \pm q N_B X_{DMAX}$, \(X_{DMAX} \) - Depletion Width

$V_{TH} \propto \sqrt{N_B}$

$X_{DM} = \sqrt{\frac{2 k_\Phi E_0}{e N_B}}$
(iii) \(V_{DS_2} = V_D - V_{S_2} = V_D - V_M \)

Since \(V_M \) is positive, \(V_{DS_2} \) is smaller. Hence \(V_{TH_2} \) increases due to lowered DIBL value.

In all three cases one observes reduction in sub-threshold current \(\Rightarrow \) reduced leakage power.
(i) \[V_{GS_2} = V_{G2} - V_{S2} = V_{G2} - V_M \]
\[= 0 - V_M = -V_M \]

Subthreshold current of M2 reduces

Hence NET LEAKAGE CURRENT REDUCES

(ii) \[V_{BS_2} = V_{B2} - V_{S2} = -V_M \]

Extra Reverse Back-Bias Enhances \(V_{TH} \) of M2. THIS LEADS TO REDUCED LEAKAGE CURRENT
LEAKAGE CONTROL

1. Stack Effect:
 ⇒ SELF REVERSE BIAS

2-INPUT NAND → AS EXAMPLE

 WHEN A = B = 0
 M2 & M1 → OFF
 M3 & M4 → ON

LEAKAGE CURRENT Flows
FROM VDD to VSS
Due to stacking of NMOS transistors M1 & M2, we observe that at node M between M1 & M2, has voltage +V_m, due to flow of leakage current. Positive V_m has THREE Effects leading to lowering of leakage current.
1. "LV/LP ICs & Systems"
 E. Sanchez - Simencio
 ANDREAS

2. LV/LP VLSI SUBSYSTEMS
 K. Yeo & K. Roy

3. Digital IC - Design Perspective
 J.M. Rabaey, A. Chandrakasan
 B. Nicolic

4. CMOS VLSI -
 Eshraghian & Waste