Total Internal Reflection

- Destructive interference
- Decaying fields
- Phase fronts
- Constructive interference
- Interference pattern
Light propagation

1. Rays can survive at discrete angles
2. There are finite number of rays

Prof. R.K. Shevgaonkar, IIT Bombay
\[s_1 = \frac{d}{\sin \theta} \]

\[s_2 = AD \cos \theta = (\cos^2 \theta - \sin^2 \theta) \frac{d}{\sin \theta} \]

\[\frac{2 \pi n_1}{\lambda} (s_1 - s_2) + 2 \delta = 2 \pi m \]

\[\frac{2 \pi n_1 d \sin \theta}{\lambda} + \delta = \pi m \]
Transverse Electric Mode

TE

Transverse Magnetic Mode

TM
Skew Rays

Hybrid Modes.
Low-order-mode fields

Prof. R.K. Shevgaonkar, IIT Bombay
Multimode fiber (MM) \(d \sim 50-100 \mu m \)

Single Mode fiber (SM) \(d \sim 6-8 \mu m \)

Cladding diameter = 125 \(\mu m \).
Graded Index Optical Fiber.
Comparison of fiber structures

Index Profile

Fiber Cross Section and Ray Paths

Monomode step-index fiber

Multimode step-index fiber

Multimode graded-index fiber

Typical Dimensions

125 μm (cladding)

8–12 μm (core)

125–400 μm (cladding)

50–200 μm (core)

125–160 μm (cladding)

50–100 μm (core)
\(\beta - \omega \) relation.

\[V_p = \text{Phase velocity} = \frac{\omega}{\beta} \]

\[V_g = \text{Group velocity} = \frac{\partial \omega}{\partial \beta} \]