Wavelength Division Multiplexed (WDM) Systems
Transmission windows

Optical Window 1270-1350 nm
 1480-1600 nm

Prof. R.K. Shevgaonkar, IIT Bombay
WDM SYSTEMS

- Low Loss BW of Fiber 1.2 to 1.6 μm
 ⇒ 30 THz

- Capable of Carrying
 300,000 ch of 10 Mb/s

- Pulse width Required ~ few tens of fs
 (System employment is not practical)

- Easy to access the BW in
 WAVELENGTH DOMAIN
 than in Time domain
ITU G.692

Reference: 193.100 THz
→ 1552.524 nm

Spacing: 100 GHz (≈ 0.8 nm at 1552 nm)

DWDM
Typical WDM Network

Tunable sources

TX λ_1

TX λ_2

...$

TX \lambda_N$

Wavelength multiplexer

Optical fiber

Postamplifier

In-line amplifier

Preamplifier

Wavelength demultiplexer

Span

Receivers (could include optical filters)
DWDM Systems

- Capacity Upgrade
- Transparency
- Wavelength Routing
- Wavelength Switching
WDM Requirement

- Dispersion Shifted/Flattened Fiber
- Tunable / Multi-wavelength Lasers
- Broadband Optical Amplifiers
- Wavelength Dependent Optical Devices
BACKGROUND TECHNOLOGIES

- SOA or FIBER AMPLIFIER (EDFA)
- INTEGRATED OPTICAL SWITCHES / COUPLERS
- FIBER BRAgg GRATINGS (FBG)
- ARRAYED WAVEGUIDE GRATINGS (AWG)
Need for Optical Amplifier

- **Power Budget**
 - Data rate 10Gbps
 - BER 10^{-9}
 - Tx Power 10dBm
 - Min Rx power -45 dBm
 - Fiber Loss 0.3 dB/Km
 - Repeater spacing ~ 200 Km

- **Rise Time Budget**
 - Data rate 10Gbps
 - DSF 1ps/Km/nm
 - DFB laser 0.01nm
 - Repeater Spacing 3000Km
Optical Amplifier Technology

- **Semiconductor Amplifier**
 - 1300 or 1550 nm band
 - High power output
 - Higher coupling loss
 - Integrable
 - Non-linearities

- **EDFA**
 - 1550nm ONLY
 - Low cross talk
 - High gain (25dB)
 - High power
 - Low coupling loss
 - Low noise
 - Polarization insensitive
Generic optical amplifier

Optical input signal -> Fiber-to-amplifier couplers -> Active medium -> Amplified optical output

Pump source
Erbium energy-level diagram