Unit 10: Classical Electrodynamics
Unit 10

Classical Electrodynamics

Charles Coulomb
1736-1806

Carl Freidrich Gauss
1777-1855

Andre Marie Ampere
1775-1836

Michael Faraday
1791-1867
Electrodynamics & STR

The special theory of relativity is intimately linked to the general field of electrodynamics. Both of these topics belong to ‘Classical Mechanics’.

James Clerk Maxwell
1831-1879

Albert Einstein
1879 - 1955
Coulomb also advanced the view that negative charges exist, that they did not merely represent absence of a positive charge.
Linear Superposition

\[\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} q_1 q_2 \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|^3} \]

\[\vec{F}_{on\ q} = \frac{q}{4\pi\varepsilon_0} \sum_i q_i \frac{\vec{r} - \vec{r}_i}{|\vec{r} - \vec{r}_i|^3} \]

\[\vec{F}_{on\ q} = \frac{q}{4\pi\varepsilon_0} \iiint \frac{\rho(\vec{r}') (\vec{r} - \vec{r}')}{|\vec{r}_1 - \vec{r}'|^3} \ d^3\vec{r}' \]
Since force on a particle is proportional to its charge q, it is fruitful to define the proportionality as the electric field \vec{E}:

$$
\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q} = \frac{q'}{4\pi\varepsilon_0} \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}
$$

$$
\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_i q_i \frac{\vec{r} - \vec{r}_i}{|\vec{r} - \vec{r}_i|^3}
$$

$$
\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho(\vec{r}') (\vec{r} - \vec{r}')}{|\vec{r}_1 - \vec{r}'|^3} d^3\vec{r}'
$$
What is the confidence level in our contention that the force goes as inverse-square of the distance between the charges?

Inverse force requires: \(V(r) \sim \frac{1}{r} \),

so that the force would vary as: \(\frac{1}{r^2} \).

Why can’t the potential be: \(V(r) \sim \frac{e^{-r/\lambda}}{r} \) (Yukawa)?
The force/interaction can originate from an exchange of particles – like ping-pong balls thrown back and forth between the charges, thus binding them.

\[V(r) \sim \frac{1}{r} \]

or

\[V(r) \sim \frac{e^{-r/\lambda}}{r} \]

\[\lambda = \frac{h}{\mu c} \]

Dimension of \(\frac{h}{\mu c} \) = \[L \times MLT^{-1} \]

\[\frac{MLT^{-1}}{MLT^{-1}} = L \]

\(\lambda \): some fundamental length

\[V(r) \sim \frac{e^{-r/h/\mu c}}{r} \]

\(\mu \): mass of the 'ping-pong' messenger carrier

\(\rightarrow \) photon mass

PCD_STiCM
Thus, the question of the interaction potential being Coulomb or Yukawa is bound to the value of μ, the photon mass.

Note that $\mu \rightarrow 0 \implies$ Coulomb.

Inverse force requires:

$$V(r) \sim \frac{1}{r},$$

so that the force would vary as:

$$\frac{1}{r^2}.$$

Thus, the question of the interaction potential being Coulomb or Yukawa is bound to the value of μ, the photon mass.

The question thus translates to what is our confidence level in knowing the mass of the photon?
“Because classical Maxwellian electromagnetism has been one of the cornerstones of physics during the past century, experimental tests of its foundations are always of considerable interest. Within that context, one of the most important efforts of this type has historically been the search for a rest mass of the photon…..”

The mass of the photon
Liang-Cheng Tu, Jun Luo and George T Gillies

The uncertainty principle, puts an ultimate upper limit:

$$\mu \langle \frac{\hbar}{c^2 \Delta t} \rangle \lesssim 10^{-66} \text{ gms}$$
\[\mu \ll 10^{-66} \text{ gms} \]

Consequences of even this tiny mass:

• a wavelength dependence of the speed of light in free space,

• deviations from exactness in Coulomb’s law and Ampère’s law,

• the existence of longitudinal electromagnetic waves,

• the addition of a Yukawa component to the potential of magnetic dipole fields, ……

\textbf{The mass of the photon}
Liang-Cheng Tu, Jun Luo and George T Gillies
Range of the Coulomb interaction:

\[R : \quad c\Delta t \sim c \frac{\hbar}{\Delta E} \sim \frac{\hbar c}{\mu c^2} \]

\[\mu \to 0 \quad \Rightarrow \quad \text{Coulomb.} \]
Rest mass of the photon

\[\frac{1}{(\text{distance})^2} \]

Range of the Coulomb potential

At what rate does the potential between two charges diminish with distance?
Consider the ‘source’ charge to be in a 3-dimensional space bounded by a closed surface having arbitrary shape.

\[
\vec{dS} = dS\hat{n}
\]

\[
\vec{r}' \quad \text{‘Source point’} \\
\vec{r} \quad \text{‘Field point’}
\]

\[
\vec{E}(\vec{r}) = \left| \vec{E}(\vec{r}) \right| \hat{u}
\]

\[
\xi = \left| \vec{E}(\vec{r}) \right| \times \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|}
\]

Position vectors with prime: source points
Without prime: field points
\[d\Omega = \left(\frac{\hat{u}}{|\vec{r} - \vec{r}'|^2} \right) \cdot \vec{dS} \]

\[= \left(\frac{1}{|\vec{r} - \vec{r}'|^2} \right) dS \cos \xi \]
\[\overrightarrow{dS} = dS \hat{n} \]

\[\vec{E}(\vec{r}) = |\vec{E}(\vec{r})| \hat{u} \]

\[\hat{u} = \frac{\vec{E}(\vec{r}) \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|} \]

\[d\Omega = \left(\frac{\hat{u}}{|\vec{r} - \vec{r}'|^2} \right) \cdot \overrightarrow{dS} \]

\[= \left(\frac{1}{|\vec{r} - \vec{r}'|^2} \right) dS \cos \xi \]

\[dS \cos \xi = d\Omega |\vec{r} - \vec{r}'|^2 \]

Independent of shape!
$$\iiint \vec{E}(\vec{r}) \cdot d\vec{S} = \iiint \left(\frac{q}{4\pi \varepsilon_0} \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \right) \cdot d\vec{S}$$

$$\iiint \vec{E}(\vec{r}) \cdot d\vec{S} = \iiint \left(\frac{q}{4\pi \varepsilon_0} \frac{\hat{u}}{|\vec{r} - \vec{r}'|^2} \right) \cdot d\vec{S}$$

$$dS \cos \xi = d\Omega |\vec{r} - \vec{r}'|^2$$

Independent of shape!

Also, the result is completely independent of just where inside the arbitrary region is the charge placed!
\[\iiint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{inside}}}{\varepsilon_0} \]

Independent of shape!

The result is completely independent of just where inside the arbitrary region the charge is placed!

Hence principle of linear superposition must hold!

\[\iiint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{total charge inside}}}{\varepsilon_0} \]
\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{total charge inside}}}{\varepsilon_0} \]
\[= \sum_i \frac{q_i, \text{inside}}{\varepsilon_0} \]
\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{\iiint \rho(\vec{r}') d^3\vec{r}'}{\varepsilon_0} \]

\[\iiint \nabla \cdot \vec{E}(\vec{r}) d^3\vec{r} = \frac{\iiint \rho(\vec{r}') d^3\vec{r}'}{\varepsilon_0} \]

Gauss’ divergence theorem

Differential and Integral forms of Gauss’ law.

Here, \(\vec{r} \) and \(\vec{r}' \) are dummy labels; they get integrated out.
Integration and/or differentiation with respect to ‘which’ coordinates?

Source coordinates, or Field coordinates?

\[\vec{r} - \vec{r}' \]

\[\left| \vec{r} - \vec{r}' \right| \]

Primed/Unprimed variables:

\[\vec{\nabla}' = \hat{e}_x \frac{\partial}{\partial x'} + \hat{e}_y \frac{\partial}{\partial y'} + \hat{e}_z \frac{\partial}{\partial z'} \]

\[\vec{\nabla} = \hat{e}_x \frac{\partial}{\partial x} + \hat{e}_y \frac{\partial}{\partial y} + \hat{e}_z \frac{\partial}{\partial z} \]

Integration/differentiation with respect to source/field coordinates

Source point

Field point

\((x', y', z')\)

\((x', y', z')\)
The result is completely independent of:

- shape of the region.
- where the charge/charges of charge-distributions is/are located,
- and also irrespective of these charge distributions being in any state of motion.

– as long as they remain inside the region under our consideration.
Continuous charge distributions:

charge density \(\rho(\vec{r}) = \lim_{\delta V \to 0} \frac{\delta q}{\delta V} \)

\[
q = \iiint \rho(\vec{r}) d^3\vec{r}
\]

\[
f(0) = \int_{-\infty}^{+\infty} f(x) \delta(x) dx
\]

\[
f(a) = \int_{-\infty}^{+\infty} f(x) \delta(x-a) dx
\]

\[
1 = \int_{-\infty}^{+\infty} \delta(x-a) dx
\]

\(\delta(x-a) \) has a spike at \(x=a \)

\[\boxed{\text{DIRAC } \delta \text{ ‘function’}}\]
Integral and Differential form of Gauss’ law:
First Equation in ‘Maxwell’s Equations’

\[
\iiint \nabla \cdot \vec{E}(\vec{r}) d^3 \vec{r} = \frac{\iiint \rho(\vec{r}) d^3 \vec{r}}{\epsilon_0}
\]

\[
= \iint \vec{E}(\vec{r}) \cdot d\vec{S}
\]

Carl Friedrich Gauss formulated the law in 1835; published in 1867

James Clerk Maxwell 1831-1879

Showed that light is EM phenomenon
We shall take a break here.......

Questions ? Comments ?

pcd@physics.iitm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

pcdeshmukh@iitmandi.ac.in

Next: L32
Unit 10 – Oersted-Ampere-Maxwell law
STiCM
Select / Special Topics in Classical Mechanics
P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras
Chennai 600036

School of Basic Sciences
Indian Institute of Technology Mandi
Mandi 175001

pcd@physics.iitm.ac.in
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 32

Unit 10 : Classical Electrodynamics

Oersted-Ampere-Maxwell Law
How shall we write the electric field due to a point charge as gradient of a scalar function?

\[
\vec{E}(\vec{r}) = -\vec{\nabla} \left[\frac{1}{4\pi \varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|} \right] = -\frac{1}{4\pi \varepsilon_0} \vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right]
\]
$$\vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right] =$$

$$= \left(\hat{e}_x \frac{\partial}{\partial x} + \hat{e}_y \frac{\partial}{\partial y} + \hat{e}_z \frac{\partial}{\partial z} \right) \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-1/2}$$

$$= \hat{e}_x \frac{\partial}{\partial x} \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-1/2} + \hat{e}_y \frac{\partial}{\partial y} \left[\ldots \right]^{-1/2} + \hat{e}_z \frac{\partial}{\partial z} \left[\ldots \right]^{-1/2}$$

$$= \hat{e}_x (\frac{-1}{2}) \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-3/2} \left\{ \frac{\partial}{\partial x} \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right] \right\} + \ldots + \ldots$$

$$= \hat{e}_x (\frac{-1}{2}) \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-3/2} \left[2(x - x') \right] + \ldots + \ldots$$

$$\vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right] = \frac{\vec{r} - \vec{r}'}{\left\{ |\vec{r} - \vec{r}'|^2 \right\}^{3/2}} = \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}$$
\[\vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right] = -\frac{\vec{r} - \vec{r}'}{\left\{ |\vec{r} - \vec{r}'|^2 \right\}^{3/2}} = -\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \]

\[\vec{E}(\vec{r}) = -\vec{\nabla} \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|} \right] \]

\[= -\frac{q}{4\pi\varepsilon_0} \vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right] \]

‘FIELD’, as negative gradient of ‘POTENTIAL’
Curl of gradient is identically zero.

The electric field is conservative.

\[\vec{E}(\vec{r}) = -\vec{\nabla} \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{r} - \vec{r}'|} \right] \]

\[= -\frac{q}{4\pi\varepsilon_0} \vec{\nabla} \left[\frac{1}{|\vec{r} - \vec{r}'|} \right] \]

\[\vec{\nabla} \times \vec{E}(\vec{r}) = \vec{0} \]
\[\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0} \]

\[\vec{\nabla} \times \vec{E}(\vec{r}) = \vec{0} \]

\[\vec{\nabla} \cdot (-\vec{\nabla} \phi) = \frac{\rho(\vec{r})}{\varepsilon_0} \]

\[\vec{\nabla} \cdot \vec{\nabla} \phi(\vec{r}) = \nabla^2 \phi(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0} \]

Poisson’s equation

“Life is good for only two things, discovering mathematics and teaching mathematics.”

- Poisson

Siméon Denis Poisson
1781-1840
Magnetic field $\vec{B}(\vec{r})$ does not originate from magnetic ‘charges’ / ‘poles’

Electric charges, when in motion, constitute a ‘current’ which generates magnetic field.

\[\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int \frac{dl \hat{u}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \]

\[= \frac{\mu_0}{4\pi} \iiint \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} d^3\vec{r}' \]

Biot & Savart 1820

Empirical law, based on experimental observations.
The primary definition of the magnetic field

\[
\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int \frac{dl \hat{u}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}
\]

\[
= \frac{\mu_0}{4\pi} \iiint \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}') d^3 \vec{r}'}{|\vec{r} - \vec{r}'|^3}
\]

gives the field’s divergence and curl:

\[
\vec{\nabla} \cdot \vec{B} = 0
\]

\[
\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}
\]

This is not hard to see by using elementary vector calculus. A useful result in this regard is the following:

\[
\vec{\nabla} \cdot \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} = 4\pi \delta(\vec{r} - \vec{r}')
\]
\[\nabla \times \vec{B} = \mu_0 \vec{J} \]

\[\Rightarrow \]

\[\mu_0 \iint \vec{J} \cdot d\vec{S} = \iiint \nabla \times \vec{B} \cdot d\vec{S} = \oint \vec{B} \cdot d\vec{l} \]

\[\Rightarrow \]

\[\mu_0 I = \oint \vec{B} \cdot d\vec{l} \]

Stokes’ theorem

Oersted-Ampere’s law
Source of electromotive force.

What is it that can have an influence on an electric charge?

- Electric field generated by another charge.

- An influence due to a changing magnetic field.
Loop: Dragged to the right.

Lorentz force predicts:
(a) Clockwise Current
(b) Counterclockwise Current
(c) No Current

Loop: Stationary

Lorentz force predicts:
(a) Clockwise Current
(b) Counterclockwise Current
(c) No Current
Faraday’s experiments

Loop held fixed; Magnet field dragged toward left.
NO Lorentz force.

Current: identical!

Strength of B decreased.
Nothing is moving, but still, current seen!!!

$I \propto \frac{dB}{dt}$
'Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity'

P. Chaitanya Das, G. Srinivasa Murty, K. Satish Kumar, T A. Venkatesh and P.C. Deshmukh

\[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\int \int (\vec{\nabla} \times \vec{E}) \cdot d\vec{S} = \int \int \left(-\frac{\partial \vec{B}}{\partial t}\right) \cdot d\vec{S} \]

\[\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \oint \vec{B} \cdot d\vec{S} = -\frac{\partial \Phi_B}{\partial t} ; \]

\[\Phi_B : \text{magnetic flux crossing the surface} \]

FARADAY – LENZ Law
Empirical laws of Classical Electrodynamics

\[\nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0} \quad \text{Coulomb, Gauss} \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \text{Faraday, Lenz} \]

\[\nabla \cdot \vec{B} = 0 \quad \text{No magnetic ‘charges’/ ‘monopoles’} \]

\[\nabla \times \vec{B} = \mu_0 \vec{J} \quad \text{Oersted, Ampere} \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

\[\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t} \]

\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}} \]
Empirical laws of Classical Electrodynamics

Charles Coulomb 1736-1806
Carl Freidrich Gauss 1777-1855
Andre Marie Ampere 1775-1836
Michael Faraday 1791-1867
James Clerk Maxwell
1831-1879

Electrodynamics: synthesis of electromagnetic phenomena and light/optics.
\[\nabla \times \vec{B} = \mu_0 \vec{J} \]

Oersted, Ampere

\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}}
\]

Faraday, Lenz

\[
\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot d\vec{S}
\]

Faraday, Lenz

Maxwell added a term corresponding to changing electric flux, similar to the term for changing magnetic flux of Faraday-Lenz law.

\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \iint \vec{E} \cdot d\vec{S}
\]

Oersted, Ampere - Maxwell

\[
\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}
\]

PCD_STiCM
The equations of James Clerk Maxwell

\[\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0} \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

\[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t} \]

\[\vec{\nabla} \cdot \vec{B} = 0 \]

\[\oint \vec{B}(\vec{r}) \cdot d\vec{S} = 0 \]

\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \oint \vec{E} \cdot d\vec{S} \]
Take the curl of the following vector: \[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B}) \]

Work this out, it is easy:
\[\vec{\nabla} \times (\vec{\nabla} \cdot \vec{E}) - (\vec{\nabla} \cdot \vec{\nabla}) \vec{E} = -\frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B}) \]

\[\vec{\nabla} \left(\vec{\nabla} \cdot \vec{E} \right) - \left(\vec{\nabla} \cdot \vec{\nabla} \right) \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \]
\[\nabla \left(\nabla \cdot \vec{E} \right) - (\nabla \cdot \nabla) \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \]

\[\nabla \left(\frac{\rho}{\varepsilon_0} \right) - \nabla^2 \vec{E} = -\frac{\partial}{\partial t} \left(\mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) = -\mu_0 \frac{\partial \vec{J}}{\partial t} - \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \]

In vacuum: \[\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \]

Likewise (show!): \[\nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \]

Second-order homogeneous partial differential equation

Wave equations

\[v = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} \]
\[\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \]

\[\nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \]

\[\frac{\omega}{k} = \frac{v}{c} = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} = c \]

\[\vec{E}(\vec{r}, t) = \left\{ \left| \vec{E}_0 \right| \hat{u} \right\} e^{i(k \cdot \vec{r} - \omega t)} \]

\[\vec{B}(\vec{r}, t) = \frac{1}{c} \hat{k} \times \vec{E}(\vec{r}, t) \]

\[\hat{u} \cdot \hat{k} = 0 \]
Maxwell observed that \(v \) obtained as above agreed with the speed of light.

He therefore concluded:

“light is an electromagnetic disturbance propagated through the field according to electromagnetic laws”
THE ELECTRO MAGNETIC SPECTRUM

Wavelength (metres)

- **Radio**: 10^3
- **Microwave**: 10^{-2}
- **Infrared**: 10^{-5}
- **Visible**: 10^{-6}
- **Ultraviolet**: 10^{-8}
- **X-Ray**: 10^{-10}
- **Gamma Ray**: 10^{-12}

Frequency (Hz)

- **Radio**: 10^4
- **Microwave**: 10^8
- **Infrared**: 10^{12}
- **Visible**: 10^{15}
- **Ultraviolet**: 10^{16}
- **X-Ray**: 10^{18}
- **Gamma Ray**: 10^{20}
We shall take a break here…….

Questions ? Comments ?

pcd@physics.iitm.ac.in http://www.physics.iitm.ac.in/~labs/amp/

pcdeshmukh@iitmandi.ac.in

Next: L33
Unit 10 – Electrodynamics & STR
STiCM
Select / Special Topics in Classical Mechanics
P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras
Chennai 600036

School of Basic Sciences
Indian Institute of Technology Mandi
Mandi 175001

pcd@physics.iitm.ac.in
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 33

Unit 10: Classical Electrodynamics

Electrodynamics & Special Theory of Relativity
\[\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} \]
\[\nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} \]

\[\frac{\omega}{c} = \frac{v}{k} = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} = c \]

\[\vec{E}(\vec{r}, t) = \left\{ \left| \vec{E}_0 \right| \hat{u} \right\} e^{i(\vec{k} \cdot \vec{r} - \omega t)} \]

\[\vec{B}(\vec{r}, t) = \frac{1}{c} \hat{k} \times \vec{E}(\vec{r}, t) \]

\[\hat{u} \cdot \hat{k} = 0 \]
The special theory of relativity is intimately linked to the general theory of electrodynamics. Both of these topics belong to ‘Classical Mechanics’.

Albert Einstein
1879 - 1955
Galilean Relativity
What is the velocity of the oncoming car?

... relative to whom?
Galilean relativity

Time t is the same in the red frame and in the blue frame.

$$\vec{r}(t) = \vec{r}'(t) + \vec{u}_c t$$

What would happen if the object of your observations is light?

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}'}{dt} + \vec{u}_c$$
\[
\frac{d \vec{r}}{dt} - \vec{u}_c = \frac{d \vec{r}'}{dt}
\]

Speed of light ?
Galilean & Lorentz Transformations.
Special Theory of Relativity.

Galileo Galilei
1564 - 1642

Hendrik Antoon Lorentz
1853-1928

Smoking is injurious to health!

Albert Einstein
1879-1955
Just what does it mean to say that “Light (EM waves) travels at the constant speed in all inertial frames of references”?

The rocket frame moves toward the right at a constant velocity f_c where $0 < f < 1$.

COUNTER-INTUITIVE?

Speed of light in a vacuum is a universal constant for all observers regardless of the motion of the observer or of the light source.

$$c = \sqrt{\frac{1}{\mu_0 \varepsilon_0}}$$
(1) S detects both the flashes simultaneously.

(2) Light from both explosions travels at equal speed toward S/M.

(3) M would expect his sensor to record light from the right-cracker, before it senses light from the one on our left side.
Events that seem SIMULTANEOUS to the stationary observer do not seem to be so to the moving observer – who also is in an inertial frame!

So, let us, in all humility, reconsider our notion of TIME and SPACE!
1. Maxwell’s equations are correct in all inertial frames of references.

2. Maxwell’s formulation predicts: EM waves travel at the speed \(c = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} \).

3. HENCE, light (EM waves) travels at the constant speed in all inertial frames of references.

Notion of TIME itself would need to change

Einstein was clever enough, & bold enough, to stipulate just that!

What happens to our notion of space & time?

\[
\text{speed} = \frac{\text{distance}}{\text{time}}
\]
Time Dilation

Length Contraction
Hendrik Antoon Lorentz
1853-1928

1902 Nobel Prize in Physics
"in recognition of the extraordinary service they rendered by their researches into the influence of magnetism upon radiation phenomena"

Lorentz contraction!
Lorentz moving up! Lorentz moving to right!

Pieter Zeeman
1865-1943

http://www.bun.kyoto-u.ac.jp/~suchii/lorentz.tr.html
LORENTZ transformations \((x, y, z, t)\) to \((x', y', z', t')\)

Requirements:

Ensure that speed of light is same in all inertial frames of references.

Transform both space and time coordinates.

Transformation equations must agree with Galilean transformations when \(v \ll \ll c\).
Origins O and O' of the two frames S and S' coincide at $t=0$ and $t'=0$.

Lorentz transformations transform the space-time coordinates of ONE EVENT.

\[
x' = \gamma(x - vt) \\
y' = y \\
z' = z \\
t' = \gamma \left(t - \frac{vx}{c^2} \right)
\]

\[
x = \gamma(x' + vt') \\
y = y' \\
z = z' \\
t = \gamma \left(t' + \frac{vx'}{c^2} \right)
\]

\[
\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}
\]

\[
= \frac{1}{\sqrt{1 - \beta^2}}
\]

Note: $\gamma \to 1$ as $v \to 0$.
Faraday’s experiments

\[\mathbf{E} = \mathbf{V} \times \mathbf{B} \]

Strength of \(B \) decreased. *Nothing* is moving, but still, current seen!!!

\[I \propto \frac{dB}{dt} \]

Einstein: Special Theory of Relativity

\[q(\mathbf{v} \times \mathbf{B}) \]

Reason here…

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]

Decreasing \(B \)

Current: identical!
“So the "flux rule" that the emf in a circuit is equal to the rate of change of the magnetic flux through the circuit applies whether the flux changes because the field changes or because the circuit moves (or both)…. Yet in our explanation of the rule we have used two completely distinct laws for the two cases: \[\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \] for "field changes“, and \[\vec{\nabla} \times \vec{B} \] for "circuit moves".

We know of no other place in physics where such a simple and accurate general principle requires for its real understanding an analysis in terms of two different phenomena.”

– Richard P. Feynman,

The Feynman Lectures on Physics
We began with simple, empirical foundations of classical electrodynamics.

\[\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} q_1 q_2 \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|^3} \]

Coulomb also advanced the view that negative charges exist, that they did not merely represent absence of a positive charge.

Experimental recognition of the inverse square law:
- Priestly (1767)
- Robinson (1769)
- Cavendish (1771)
- Coulomb (1785)
Rest mass of the photon

Range of the Coulomb potential

\[\frac{1}{(\text{distance})^2} \]

At what rate does the potential between two charges diminish with distance?
\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \oint \left(\frac{q}{4\pi \varepsilon_0} \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \right) \cdot d\vec{S} \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \oint \left(\frac{q}{4\pi \varepsilon_0} \frac{\hat{u}}{|\vec{r} - \vec{r}'|^2} \right) \cdot d\vec{S} \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \oint \left(\frac{q}{4\pi \varepsilon_0} \frac{dS \cos \xi}{|\vec{r} - \vec{r}'|^2} \right) \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \oint \left(\frac{q}{4\pi \varepsilon_0} \frac{d\Omega |\vec{r} - \vec{r}'|^2}{|\vec{r} - \vec{r}'|^2} \right) \]

\[= \frac{q}{\varepsilon_0} \]

\[dS \cos \xi = d\Omega |\vec{r} - \vec{r}'|^2 \]

Independent of shape!

Also, the result is completely independent of just where inside the arbitrary region is the charge placed!
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \]

Oersted, Ampere, Biot-Savart

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enclosed}} \]

Faraday, Ampere-Maxwell

Maxwell added a term corresponding to changing electric flux, similar to the term for changing magnetic flux of Faraday-Lenz law.

\[\oint \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial \Phi_B}{\partial t} = -\frac{\partial}{\partial t} \iint \mathbf{B} \cdot d\mathbf{S} \]

Faraday, Lenz

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enclosed}} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \iint \mathbf{E} \cdot d\mathbf{S} \]

Oersted, Ampere - Maxwell

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \]
The equations of James Clerk Maxwell

\[\nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0} \]

\[\oint \vec{E}(\vec{r}) \cdot d\vec{S} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

\[\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \Phi_B}{\partial t} \]

\[\nabla \cdot \vec{B} = 0 \]

\[\oint \vec{B}(\vec{r}) \cdot d\vec{S} = 0 \]

\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}} + \]

\[\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \]

\[+ \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \oint \vec{E} \cdot d\vec{S} \]
The equations of James Clerk Maxwell

\[\nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0} \]

Changing magnetic field produces a rotational electric field.

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \]

Changing electric field produces a rotational magnetic field.

\[\nabla \cdot \vec{B} = 0 \]

\[\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \]

\[v = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} \]

\[c: \text{constant.} \]
Maxwell’s equations involve derivatives with respect to space and time, and they unify electro-magnetic phenomena and light/optics.

Space? Time?

Feynman’s observations!

Special Theory of Relativity (STR)

connects all this up.
\[
\vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right]
\]

\[
\vec{F} = \frac{d\vec{p}}{dt}
\]

Charge particle dynamics observed in different INERTIAL frames of reference
Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. S' moves with respect to S at a constant velocity \vec{v}_f along the X-direction.

$$\frac{d\vec{p}}{dt} = \vec{F} \quad \text{where} \quad \vec{F} = q\left[\vec{E} + \vec{v} \times \vec{B}\right]$$
\[
\frac{d\vec{p}}{dt} = \vec{F} \quad \text{where} \quad \vec{F} = q\left[\vec{E} + \vec{v} \times \vec{B}\right]
\]

\(x, y, z, t \rightarrow x', y', z', t'\)

\(\vec{r} = \vec{r}(t); \quad \vec{r}' = \vec{r}'(t')\)

\[
\left(\vec{E}, \vec{B}\right) \rightarrow \left(\vec{E}', \vec{B}'\right)
\]

\[
\frac{d\vec{p}'}{dt'} = \vec{F}' \quad \text{where} \quad \vec{F}' = q\left[\vec{E}' + \vec{v}' \times \vec{B}'\right]
\]

\(\vec{r}' = \vec{r}'(t')\)
We shall take a break here…….

Questions ?

pcd@physics.iitm.ac.in

Comments ?

http://www.physics.iitm.ac.in/~labs/amp/

pcdeshmukh@iitmandi.ac.in

Next: L34

Unit 10 – Electrodynamics & STR
STiCM

Select / Special Topics in Classical Mechanics

P. C. Deshmukh

Department of Physics
Indian Institute of Technology Madras
Chennai 600036

School of Basic Sciences
Indian Institute of Technology Mandi
Mandi 175001

pcd@physics.iitm.ac.in
pcdeshmukh@iitmandi.ac.in

STiCM Lecture 34

Unit 10: Classical Electrodynamics

Electrodynamics & Special Theory of Relativity
Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. \(S' \) moves with respect to \(S \) at a constant velocity \(\vec{V}_f \) along the X-direction.

\[
\frac{d\vec{p}}{dt} = \vec{F}
\]

where \(\vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right] \)
Speed of light: does not change...

...from one inertial frame of reference to another......

STR ↔ ED

... it is 'time' that changes!
\[\frac{d\vec{p}}{dt} = \vec{F} \quad \text{where} \quad \vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right] \]

\[\begin{align*} x, y, z, t & \rightarrow x', y', z', t' \\
\vec{r} &= \vec{r}(t); \quad \vec{r}' = \vec{r}'(t') \\
(\vec{E}, \vec{B}) & \rightarrow (\vec{E}', \vec{B}') \\
\end{align*} \]

\[\frac{d\vec{p}'}{dt'} = \vec{F}' \quad \text{where} \quad \vec{F}' = q \left[\vec{E}' + \vec{v}' \times \vec{B}' \right] \]

\[\vec{r}' = \vec{r}'(t') \]
\[x' = \gamma_f (x - v_f t), \quad y' = y, \quad z' = z, \quad t' = \gamma_f \left(t - \frac{v_f}{c^2} x \right) \]

where \(\gamma_f = \frac{1}{\sqrt{1 - \frac{v_f^2}{c^2}}} \)

\[E'_{x} = E_{x} \]
\[E'_{y} = \gamma_f \left[E_{y} - v_f B_{z} \right] \]
\[E'_{z} = \gamma_f \left[E_{z} - v_f B_{y} \right] \]

Unity of electric & magnetic phenomena -- note the constructs of linear superposition.
Demonstration of the ‘STR ↔ ED’ educational software

'Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity',

P. Chaitanya Das, G. Srinivasa Murty,
K. Satish Kumar, T A. Venkatesh
and P.C. Deshmukh

You can download the software from this link:

http://www.physics.iitm.ac.in/~labs/amp/homepage/dasandmurthy.htm
Charge of the particle: \(-1.602\times10^{-19}\) C, electron

Mass of the particle: \(9.1\times10^{-31}\) Kg

Case 1

\[
\begin{align*}
Ex &= 0.0 & Bx &= 0.1 & vx &= 4.6e7 \\
Ey &= 0.0 & By &= 0.0 & vy &= 2.65e8 \\
Ez &= 0.0 & Bz &= 0.0 & vz &= 0.0 \\
v_{rel} &= 2\ \text{e8}
\end{align*}
\]

Units: Electric field \(E\) in \(\text{V/m}\), Magnetic field \(B\) in \(\text{Wb/m}^2\)

and velocity in \(\text{m/s}\)

Case 2

\[
\begin{align*}
Ex &= 0.0 & Bx &= 0.05 & vx &= 0.0 \\
Ey &= 0.0 & By &= 0.0 & vy &= 0.0 \\
Ez &= 10e3 & Bz &= 0.0 & vz &= 0.0 \\
v_{rel} &= 1.5e8
\end{align*}
\]

Case 3

\[
\begin{align*}
Ex &= 35e3 & Bx &= 0.05 & vx &= 0.0 \\
Ey &= 0.0 & By &= 0.0 & vy &= 2.65e7 \\
Ez &= 0.0 & Bz &= 0.0 & vz &= 0.0 \\
v_{rel} &= -2.5e8
\end{align*}
\]
Examine trajectories of charged particles in EM fields, as observed by two observers both in their respective inertial frames. \(S' \) moves with respect to \(S \) at a constant velocity \(\vec{V}_f \) along the X-direction.
Charge of the particle: -1.602×10^{-19} C
Mass of the particle: 9.1×10^{-31} Kg

Case 1

<table>
<thead>
<tr>
<th>E_x</th>
<th>B_x</th>
<th>v_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.1</td>
<td>4.6×10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_y</th>
<th>B_y</th>
<th>v_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.65×10^8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_z</th>
<th>B_z</th>
<th>v_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$v_{rel} = 2\times10^8$

Units: Electric field E in V/m, Magnetic field B in Wb/m2 and velocity in m/s

Case 2

<table>
<thead>
<tr>
<th>E_x</th>
<th>B_x</th>
<th>v_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.05</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_y</th>
<th>B_y</th>
<th>v_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_z</th>
<th>B_z</th>
<th>v_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>10×10^3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$v_{rel} = 1.5\times10^8$

Case 3

<table>
<thead>
<tr>
<th>E_x</th>
<th>B_x</th>
<th>v_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>35×10^3</td>
<td>0.05</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_y</th>
<th>B_y</th>
<th>v_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.65×10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_z</th>
<th>B_z</th>
<th>v_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$v_{rel} = -2.5\times10^8$
Electrodynamics in tensor notation

We provide a very brief introduction;

- once the structure of the equations is understood, ordinary matrix algebra is sufficient to interpret the relations.

Detailed work-out is left as rather straight-forward exercises.
EM field expressed as derivable from ‘potential’

contravariant 4-vector

\[x^\mu = (x^0, \vec{x}) = (x^0, x^1, x^2, x^3) \]
\[= (ct, x, y, z) \]

covariant 4-vector

\[x_\mu = (x_0 = ct, -\vec{x}) \]

\[
g_{\mu\nu} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}
\]

\[
x^\mu = g^{\mu\nu} x_\nu
\]

\[
\begin{bmatrix}
x^0 \\
x^1 \\
x^2 \\
x^3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{bmatrix}\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
\[A^\mu = \left(\frac{\phi}{c}, \vec{A} \right) \]

\[F^{\mu\nu} = \frac{\partial A^\nu}{\partial x_\mu} - \frac{\partial A^\mu}{\partial x_\nu} \]

Notation:

\[\partial^\mu \equiv \frac{\partial}{\partial x_\mu} \quad \text{and} \quad \partial_\mu \equiv \frac{\partial}{\partial x^\mu} \]
If a frame of reference \bar{S} moves w.r.t. S along X-axis at speed $|\vec{v}_f|$, the Lorentz transformation is:

$$\bar{x} = \gamma_f (x - v_f t), \quad \bar{y} = y, \quad \bar{z} = z, \quad \bar{t} = \gamma_f \left(t - \frac{v_f}{c^2} x \right)$$

$$\begin{bmatrix}
\bar{a}^0 \\
\bar{a}^1 \\
\bar{a}^2 \\
\bar{a}^3
\end{bmatrix} = \begin{bmatrix}
\gamma_f & -\gamma_f \beta & 0 & 0 \\
-\gamma_f \beta & \gamma_f & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
a^0 \\
a^1 \\
a^2 \\
a^3
\end{bmatrix}$$

$$\bar{a}^\mu = \Lambda^\mu_v a^v \quad \text{where} \quad \gamma_f = \frac{1}{\sqrt{1 - \frac{v^2_f}{c^2}}} \quad \beta = \frac{v_f}{c}$$
The EM field is conveniently expressed as an antisymmetric tensor that has the following form:

\[
\begin{bmatrix}
 t^{00} = 0 & t^{01} & t^{02} & t^{03} \\
 t^{10} = -t^{01} & t^{11} = 0 & t^{12} & t^{13} \\
 t^{20} = -t^{02} & t^{21} = -t^{12} & t^{22} = 0 & t^{23} \\
 t^{30} = -t^{03} & t^{31} = -t^{13} & t^{32} = -t^{23} & t^{33} = 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 F^{00} = 0 & F^{01} = \frac{E_x}{c} & F^{02} = \frac{E_y}{c} & F^{03} = \frac{E_z}{c} \\
 F^{10} = -F^{01} & F^{11} = 0 & F^{12} = B_z & F^{13} = -B_y \\
 F^{20} = -F^{02} & F^{21} = -F^{12} & F^{22} = 0 & F^{23} = B_x \\
 F^{30} = -F^{03} & F^{31} = -F^{13} & F^{32} = -F^{23} & F^{33} = 0
\end{bmatrix}
\]
\(\bar{a}_\mu = \Lambda^\mu_\nu a^\nu : \) Transformation rule for 1\(^{\text{st}}\) rank tensor

4-vector

\[\bar{t}^{\mu\nu} = \Lambda^\mu_\lambda \Lambda^\nu_\sigma t^{\lambda\sigma} : \]
Transformation rule for 2\(^{\text{nd}}\) rank tensor
\[\frac{\partial F^{\mu\nu}}{\partial x^\nu} = \mu_0 J^\mu : \text{Maxwell's equations} \]

where \(J^\mu = (c \rho, J_x, J_y, J_z) \) is the Current Density 4-Vector.
\[\frac{\partial F^{\mu\nu}}{\partial x^\nu} = \mu_0 J^\mu : \]

\[
\begin{align*}
F^{00} &= 0 \quad F^{01} = \frac{E_x}{c} \quad F^{02} = \frac{E_y}{c} \quad F^{03} = \frac{E_z}{c}
\end{align*}
\]

\[J^\mu = (c \rho, J_x, J_y, J_z) \text{ is the Current Density 4-Vector.} \]

For \(\mu=0\):

\[
\begin{align*}
\frac{\partial F^{0\nu}}{\partial x^\nu} &= \sum_{\nu=0}^3 \frac{\partial F^{0\nu}}{\partial x^\nu} = \\
&= \frac{\partial F^{00}}{\partial x^0} + \frac{\partial F^{01}}{\partial x^1} + \frac{\partial F^{02}}{\partial x^2} + \frac{\partial F^{03}}{\partial x^3} = \mu_0 J^0
\end{align*}
\]

i.e.

\[
\frac{1}{c} \left[\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \right] = \mu_0 c \rho \quad \sqrt{\frac{1}{\mu_0 \epsilon_0}} = c
\]

\[\rightarrow \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \]
References:

We shall take a break here…….

Questions ?

pcd@physics.iitm.ac.in

Comments ?

http://www.physics.iitm.ac.in/~labs/amp/

pcdeshmukh@iitmandi.ac.in

Next: L35
Unit 11 – CHAOTIC DYNAMICAL SYSTEMS