Here, we will consider some problems which can be analysed in terms of the basic elements of quantum mechanics.

8.1 Tutorial 1: Some preliminaries

1. In a photo-dissociation process, an incoming photon of frequency ν is absorbed by a positronium, and the electron is emitted at an angle θ with the direction of the incoming photon. What are the possible moments of the electron? Treat the electron and the positron non-relativistically.

2. Obtain the final frequency in Compton scattering by considering the electron non-relativistically. Carry out an expansion in inverse powers of c to obtain the usual expression for Compton shift.

3. Carry out Planck’s analysis for radiation confined to a plane. What is the energy density per unit area, per unit wavelength? For what values of the wavelength is this a maximum? What is the total energy per unit area?

4. For a particle with charge q, moving in the presence of an external magnetic field, the canonical momentum is $mv - \frac{q}{2} \vec{r} \times \vec{B}$. Use Bohr’s quantization condition to obtain the energy levels of a particle with charge q in the presence of \vec{B}.

8.2 Tutorial 2: Elements of Quantum mechanics

1. For a hydrogen atom with wave function

$$\psi = A r \sin \theta e^{-i\phi} e^{-r/2r_0}$$

normalise the wave function and consider the total current across the plane $x = 0$, $z = (0, \infty)$ $y = (0, \infty)$.

Obtain the wave function in the momentum space.

2. For a particle described by a wave function

$$\psi(x) = A x e^{-|x|/a}, \quad a > 0,$$

in a potential $V(x)$ which vanishes at infinity, obtain the energy and the potential, and calculate the average values of $|x|$, $1/|x|$. Obtain the wave function in the momentum space and calculate the average values of p and p^2. Relate the average kinetic energy and the potential energy.

3. In the 3-dimensional vector space, write down a complete set of orthonormal basis vectors a_i, $i = 1, 2, 3$.

Show that they satisfy the closure property. In this basis, consider an operator A, with $Aa_1 = a_1 + a_2$, $Aa_2 = a_3$, $Aa_3 = 0$.

What are the eigenvalues and eigenvectors of A? Determine the eigenvalues and eigenvectors of $(A - A^+)/2$.

4. Normalize the 3-dimensional, particle wave function $1/(r^2 + a^2)$. Obtain the average values of r, p^2.

What is the probability that the particle is found in the region $? \quad$
5. Which of the operators \vec{r}, \vec{p}, $\vec{r} \cdot \vec{p}$, $\vec{r} \times \vec{p}$, p^2 are observables? Which of them commute with the Hamiltonian of a particle with charge q, in the presence of a magnetic field in the z direction?

Write down the function which is the eigenfunction of p^2 and \vec{p}, and of p^2 and parity operator π.

8.3 Tutorial 3: Problems in 1-D

1. Obtain the wave function which has the minimum value for the product $\sigma_x \sigma_p$.

2. For a particle of mass m in a potential

$$V(x) = -Z\delta(x), \quad Z > 0, \quad x < a, \quad a > 0$$

what is the minimum value of Z for which a bound state exists? For what value of Z is there a bound state with energy $E = -\hbar^2/2ma^2$? For this case, obtain the average value of x.

3. A particle of mass m in a box with potential $V(x)$,

$$V(x) = 0 \quad \text{for} \quad 0 < x < a$$

$$= \infty \quad \text{for} \quad x < 0 \text{ or } x > a,$$

is described by the wave function

$$\psi(x, 0) = A \sin\left(\frac{(m + n)\pi x}{2a}\right) \cos\left(\frac{(n - m)\pi x}{2a}\right)$$

where m and n are integers. Obtain the average values of H and x as functions of time.

4. For a particle of mass m described by the potential in

$$H = \frac{1}{2m}p^2 + \frac{1}{2}kx^2 + bx,$$

consider

$$a = \left(\frac{m\omega}{2\hbar}\right)^{1/2}\left[x + \frac{i}{m\omega}p + \frac{b}{k}\right],$$

and express H in terms of a, a^+. Obtain the expressions for $[a, a^+]$, $[a, H]$, and eigenvalues and eigenfunctions of a.

5. Obtain the bound state energies and wave functions for a particle of mass m in a potential

$$V(x) = -\frac{Z}{|x|} + \frac{a}{x^2}, \quad Z > 0, \quad a > 0.$$

Obtain the average value of $1/|x|$ for the ground state.

8.4 Tutorial 4: Problems in 2-D and 3-D

1. For a power-law potential,
obtain the dependence of the energy, its eigenfunctions, and the average values of r, on mass m, Z, n.

2. For a particle of mass μ in a two-dimensional potential

$$V(r) = -\frac{Z}{r} + \frac{c}{r^2},$$

obtain the lowest energy eigenvalue for a given angular momentum quantum number m, and the corresponding normalized wave function. Calculate the average values of $1/r$, $1/r^2$, and use the virial theorem to obtain the average kinetic energy for the state.

3. For a particle of mass m described by the two-dimensional potential

$$V(r) = \frac{1}{2} kr^2 [3 + \cos(2\phi)] + br\cos(\phi),$$

use the creation and annihilation operators to write down the normalized wave function for the two lowest energy eigenstates. Calculate the average value of y for the normalized state

$$\psi = \frac{1}{\sqrt{2}} (|\psi_0 > + |\psi_1 >)$$

as a function of time.

4. For a particle of mass m in a 3-D potential

$$V(r) = \begin{cases} \infty & \text{for } r < R, \\ -V_0 & \text{for } R < r < R + a, \\ 0 & \text{for } r > R + a, \end{cases}$$

obtain an implicit expression for the bound state energies for the $l = 0$ states.

5. Obtain the wave functions and bound state energies for a 3-D potential

$$V(r) = \frac{1}{2} kr^2 + a/r^2.$$ For the lowest energy l state, calculate the average values of r^2 and $1/r^2$. Use the virial theorem to obtain the average kinetic energy and verify the result by direct calculation.

6. An electron in a Coulomb potential is described by the wave function

$$\psi(\vec{r}, t) = A[f_0(t)e^{-r/r_0} + f_1(t)\frac{z}{r_0}e^{-r/2r_0}]$$

with $f_0(0) = f_1(0) = 1$. Determine the normalization constant A, and obtain the average values of z, r, L_x and L_z^2 as functions of time.

7. For an electron in a strong magnetic field in the z direction, evaluate the commutators $[H, \vec{L}]$, $[H, \vec{p}]$.

Which observables are constant in time?