Coupled Electrothermal-elastic Modelling

G. K. Ananthasuresh
Professor, Mechanical Engineering
Indian Institute of Science
Bangalore, India

suresh@mecheng.iisc.ernet.in
Effects of heating on mechanical deformation

\[\alpha = \frac{d\varepsilon}{dT} \]
Temperature coefficient of expansion

\[\varepsilon(T) = \varepsilon(T_0) + \alpha(T - T_0) \]
Uniaxial thermal strain

\[\varepsilon_{\text{mismatch}}(T) = (\alpha_f - \alpha_s)(T - T_0) \]
Mismatched thermal strain and stress between a film and a substrate that are bonded to each other.

\[\sigma_{\text{mismatch}} = \left(\frac{E}{1 - v} \right) \varepsilon_{\text{mismatch}} \]

\[\varepsilon_z = -\left\{ \alpha_f + 2v(\alpha_f - \alpha_s) \right\}(T - T_0) \]
Total strain for a sandwiched film in the thickness (z) direction
Embedded actuation:
Actuator and mechanism are together.
(Guckel et al., 1992; Comtois and Bright, 1996)

Series connection

Bends up

TEMP VALUE
+3.0 E+02
+3.19 E+02
+3.57 E+02
+3.56 E+02
+3.74 E+02
+3.93 E+02
+4.11 E+02
+4.30 E+02
+4.48 E+02
+4.67 E+02

cold

hot

G.K. Ananthasuresh, Indian Institute of Science
Parallel connection

\[R = \frac{\ell}{A} \]

Temperature distribution.
Selective doping (if made with silicon)
ETC expansion block
Parallel micro manipulator

With three degrees of freedom; Made using MUMPs, polysilicon.
Devices made with PennSOIL

Doped

SiO₂

Silicon

Silicon

1 mm
Modeling
Governing equations

Electrical Domain

\[\nabla \cdot (\tilde{k}_e \nabla v) + i_e = 0 \quad \text{in } \Omega \]

\[\nu = \nu_e \quad \text{on } \Gamma_{eE} \]

\[\bar{n} \cdot (\tilde{k}_e \nabla v) = f_e \quad \text{on } \Gamma_{nE} \]

Elastic Domain

\[\nabla \bar{\sigma} + \bar{F} = 0 \quad \text{in } \Omega \]

\[\bar{\sigma} = \tilde{E} [\tilde{\varepsilon} - \alpha(T - T_0) \bar{I}] \quad \text{in } \Omega \]

\[\tilde{\varepsilon} = \frac{\nabla \bar{u} + (\nabla \bar{u})^T}{2} \quad \text{in } \Omega \]

\[\bar{u} = \bar{u}_e \quad \text{on } \Gamma_{eM} \]

\[\bar{n} \cdot \bar{f}_u = \bar{f}_u \quad \text{on } \Gamma_{nM} \]

Thermal Domain

\[\nabla \cdot (\tilde{k}_t \nabla T) + \dot{q}_T = 0 \quad \text{in } \Omega \]

\[\dot{q}_T = \tilde{k}_e \nabla \nu \cdot \nabla \nu \quad \text{in } \Omega \]

\[T = T_e \quad \text{on } \Gamma_{eT} \]

\[\bar{n} \cdot (\tilde{k}_t \nabla T) = f_T \quad \text{on } \Gamma_{nT} \]

Inter-domain Coupling

\[\tilde{k}_e(T), \quad q_T(v), \quad \bar{E}(T), \quad \alpha(T), \]

Nonlinearity

\[\tilde{k}_e(T), \quad \tilde{k}_t(T), \quad f_T(T), \]

\[\bar{E}(T), \alpha(T). \]
Thermal modeling

- **Convection**
 - Temperature dependence of heat transfer properties.
 - Size dependence of heat transfer properties.

- **Radiation**
 - View / Shape factors.
 - Radiation heat transfer between parts of the same device at different temperatures.

- **Boundary Conditions**
 - Essential Boundary conditions at the device anchor.
 - Natural Boundary conditions at the device anchor.

- **Conduction through trapped air volume**
 - Conduction between parts of the same device at different temperature with an intervening trapped air volume.
 - Conduction from the underside of the device to the substrate through the air trapped between them.

- **Temperature dependence of thermo-physical Properties**

\[h = \text{heat transfer coefficient} \]
Why convection and radiation?

Thermal Expansion Device (TED), Cragun & Howell (1998)

Without convection or radiation

With convection and radiation
EBC v/s NBC

Essential Boundary C
Thermally Grounded

Natural Boundary C
Not Thermally Grounded
The Finite Element model

20 node, 3-D Continuum elements in ABAQUS

Fully Coupled Electro-Thermal Analysis

Sequentially Coupled Thermo-Elastic Analysis

With temperature dependent material properties and heat transfer coefficients.
Thermal Boundary Conditions and Scaling: Case Studies

- **Same Maximum Temperature at Steady State**
 - EBC + Meso
 - NBC + Meso
 - EBC + Micro
 - NBC + Micro

 Made using PennSOIL

- **Same Power Input**
 - EBC + Meso
 - NBC + Meso
 - EBC + Micro
 - NBC + Micro

 Made using MUMPs

- **Same Applied Voltage**
 - EBC + Meso
 - NBC + Meso
 - EBC + Micro
 - NBC + Micro

Experiment

G.K. Ananthasuresh, Indian Institute of Science
Same Maximum Temperature

Meso / EBC

Meso / NBC

Micro / EBC

Micro / NBC

G.K. Ananthasuresh, Indian Institute of Science
Same Maximum Temperature

Meso 10 times

Micro

Displacement
Same Applied Voltage

Maximum Temperature

Normalised Transverse Displ.

G.K. Ananthasuresh, Indian Institute of Science
Meso scale EBC

Meso scale NBC

Tip deflection (μm)

Applied Voltage V

G.K. Ananthasuresh, Indian Institute of Science
More complicated geometry

Temperature K

Applied Voltage V

deflection um

G.K. Ananthasuresh, Indian Institute of Science
One dimensional approximation

Electrical Model

Thermal Model

Elastic Model

(Maizel’s theorem to compute the output deflection)
Parameters for analytical modeling of electro-thermal-compliant actuator

Out-of-plane thickness $= p_3 L$

$L = \delta z_e$
Electrical analysis

Notice how resistance, current, and dissipated power vary with scaling.
Coupling between electrical and thermal analysis

\[\dot{Q}_{e_i} = \frac{J^2 R_i}{A_i L_i} = \frac{L^2 V^2}{\phi_e^2 A_i^2 \rho_e} \quad i = 1, 2, 3, 4 \]

\[\dot{Q}_{e_1} = \frac{V^2}{\phi_e^2 p_1^2 p_2^2 L^2 \rho_e} \]

\[\dot{Q}_{e_2} = \frac{V^2}{\phi_e^2 p_1^2 p_2^2 L^2 \rho_e} \]

\[\dot{Q}_{e_3} = \frac{V^2}{\phi_e^2 p_1^2 p_3^2 L^2 \rho_e} \]

\[\dot{Q}_{e_4} = \frac{V^2}{\phi_e^2 p_1^2 p_2^2 L^2 \rho_e} \]
Thermal analysis

Temperature profile in the connector is not modeled as it is negligibly short.

Out-of-plane thickness = pL

\[
\frac{d^2 T_i(x)}{dx^2} + \frac{\dot{Q}_e}{k_t} = 0 \quad i = 1, 3, 4
\]

\[
T_i(x) = -\frac{\dot{Q}_e}{2k_t} x^2 + a_i x + b_i \quad i = 1, 3, 4
\]

Six constants to be evaluated from the boundary conditions.
Boundary conditions to solve for constants

\[T_i(x) = -\frac{\dot{Q}_{e_i}}{2k_t}x^2 + a_ix + b_i \quad i = 1, 3, 4 \]

1. Temperature raise at the left end is zero.
\[T_1(x = 0) = T_0 \quad \Rightarrow \quad b_1 = T_0 \]

2. Temperature raises at the interface of first and third segments are equal.
\[T_1(x = L_1) = T_3(x = 0) \quad \Rightarrow \quad -\frac{\dot{Q}_{e_1}}{2k_t}L^2 + a_1L + T_0 = b_3 \]

3. Thermal equilibrium of the second segment
\[-k_tA_1 \left. \frac{dT_1}{dx} \right|_{x=L_1} - k_tA_3 \left. \frac{dT_3}{dx} \right|_{x=0} + \dot{Q}_{e_2}A_2L_2 = 0\]
\[-k_t p_t p_2 L^2 \left(-\frac{\dot{Q}_{e_1}}{k_t}L + a_1 \right) - k_t p_t p_3 L^2 a_3 + \dot{Q}_{e_2} p_t p_2^3 L^3 = 0\]
Boundary conditions (contd.)

\[T_i(x) = -\frac{\dot{Q}_{e_i}}{2k_t} x^2 + a_i x + b_i \quad i = 1, 3, 4 \]

4. Temperature raises at the interface of third and fourth segments are equal.

\[T_3(x = L_3) = T_4(x = 0) \quad \Rightarrow \quad \frac{\dot{Q}_{e_3}}{2k_t} (1 - p_1)^2 L^2 + a_3 (1 - p_1) L + b_3 = b_4 \]

5. Heat flux continuity at the interface of third and fourth segments.

\[k_t A_3 \frac{dT_3}{dx} \bigg|_{x=L_3} - k_t A_4 \frac{dT_4}{dx} \bigg|_{x=0} = 0 \quad \Rightarrow \quad k_t p_t p_3 L^2 \left(-\frac{\dot{Q}_{e_3}}{k_t} (1 - p_1) L + a_3 \right) - k_t p_t p_2 L^2 a_4 = 0 \]

6. Temperature raise at the end of the fourth segment is zero.

\[T_4(x = L_4) = T_0 \quad \Rightarrow \quad p_1 L a_4 + b_4 = \frac{\phi_{i_5} V^2}{\phi_e \rho_e k_t} + T_0 = c_5 \]

Total temperature raise = \[\frac{V^2}{\rho_e k_t} \]

Notice the lack of scaling effect!
Elastic analysis

Maizel’s theorem to find the vertical deflection at the tip.

\[\Delta = \sum_{i=1}^{4} \left[\int_{0}^{L_i} \hat{F}_{axial_i}(x) \alpha \left\{ T(x)_i - T_0 \right\} dx \right] \]

\[\frac{\Delta}{L} = \phi_\Delta V^2 \frac{\alpha}{\rho e k_i} \]

Notice on what quantities the relative deflection depends.

With convection included, it would be different.
With convection included…

Without convection…

\[
\frac{\Delta}{L} = \phi \frac{V^2}{\rho_e k_t} \propto L^0
\]

With convection…

\[
\frac{\Delta}{L} \propto \frac{1}{\sqrt{L}}
\]

\[
T \propto \frac{\dot{Q}L}{h} \propto \frac{V^2}{\rho_e hL} \propto \frac{1}{L}
\]

\[
\frac{d^2 T_i(x)}{dx^2} + \frac{\dot{Q}_{e_i}}{k_t} = 0 \quad i = 1..4
\]
Main points

- Electro-thermal-elastic actuation is easy to implement in practice.
 - Large forces and displacements (relatively)
 - Slow up to 10^4 s

- Coupled modelling is sequential, usually...
 - Temperature-dependent properties make it nonlinear.

- Reduced order modelling is convenience and useful.
 - But not applicable always.

Suresh @ mech@eng.iisc.ernet.in
G.K. Ananthasuresh, Indian Institute of Science