NPTEL Video Course
Advanced Complex Analysis – Part 2: Singularity at Infinity, Infinity as a Value, Compact Spaces of Meromorphic Functions for the Spherical Metric and Spherical Derivative, Local Analysis of Normality, Theorems of Marty-Zalcman-Montel-Picard-Royden-Schottky

http://nptel.ac.in/syllabus/111106094/
by Dr. Thiruvalloor Eesanaipaadi Venkata Balaji
Department of Mathematics, IIT-Madras

Mid-Course Exam (Syllabus: Units 1 to 8) Time: Two Hours Maximum Marks: 40

1. State the generalised version of Liouville’s theorem. 2 marks

2. Consider the function
\[f(z) = \frac{z^2 - 2z + 3}{z^3 + 1}. \]
 a) What kind of a singular point is \(\infty \) for \(f \)? Why?
 b) Write out the singular (principal) and analytic parts of \(f \) at \(\infty \).
 c) Verify the Residue Theorem for the extended complex plane for \(f \). 7 marks

3. Show that \(f_n(z) = z^{-n} \) converges normally to \(\infty \) in the unit disc \(|z| < 1 \). Is the convergence uniform? Justify your answer. 5 marks

4. Can a sequence of holomorphic (analytic) functions converge normally in the spherical metric to a strictly meromorphic function? Why? 2 marks

5. What kind of singularity does \(f(z) = e^z \) have at \(\infty \)? Why? 3 marks

6. A function \(f(z) \) has an isolated singularity at \(z_0 \). Given that \(f \) is a one-to-one mapping in a neighborhood of \(z_0 \), what kind of singularity can \(z_0 \) be? Why? 3 marks

7. State the Casorati-Weierstrass Theorem. Show that the only one-to-one entire functions onto the complex plane are of the form \(f(z) = az + b, a \neq 0, b \in \mathbb{C} \). 6 marks

8. Let \(f(z) = (z^2 + 1)^{-1} \).
 a) Find the spherical derivatives \(f^\#(0) \) and \(f^\#(i) \).
 b) Identify the extended complex plane with the Riemann sphere under the stereographic projection. Find the arc length of \(f(\{z : |z| = 1\}) \). 7 marks

9. Let \(f(z) \) have a pole at \(z_0 \). Prove that \(f^\#(z_0) = (1/f)^\#(z_0) \). 5 marks