Lecture 6: Riemann Surface Structures on Cylinders and Tori via Covering Spaces

Consider the following four sets:

- The cylinder \(\mathbb{C}/\mathbb{Z} \) where \(\mathbb{Z} \) is thought of as the subgroup of translations by integer multiples of a fixed non-zero complex number;
- The punctured plane \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \);
- The punctured unit disc \(\Delta^* = \Delta \setminus \{0\} \), where, \(\Delta = \{z : |z| < 1\} \) and
- The annulus \(\Delta_r = \{z \in \mathbb{C} | r < |z| < 1\} \).

Each of the above topological spaces is homeomorphic to the others. It is easy to see that \(\mathbb{C}^* \), \(\Delta^* \) and \(\Delta_r \) are homeomorphic to one another. One way to see that \(\mathbb{C}^* \) is homeomorphic to the cylinder \(\mathbb{C}/\mathbb{Z} \) is the following. Consider the sphere \(S^2 \). We can see from the above image that there is a homeomorphism from the cylinder \(\mathbb{C}/\mathbb{Z} \) to \(S^2 \setminus \{N, S\} \) where \(N, S \) denote respectively the “north-” and “south poles” of the sphere. This homeomorphism is obtained by sending each point \(P \) on the cylinder to the point \(Q \) on \(S^2 \), where the line joining \(P \) with the centre of \(S^2 \) pierces \(S^2 \) at \(Q \). Thereby \(S^2 \setminus \{N, S\} \) becomes homeomorphic to \(\mathbb{C}/\mathbb{Z} \). We know that \(S^2 \setminus \{N\} \cong \mathbb{C} \) by the stereographic projection from \(N \). So \(S^2 \setminus \{N, S\} \cong \mathbb{C} \setminus \{0\} \) since under this stereographic projection the south pole \(S \) corresponds to the origin. Hence we now have \(\mathbb{C}/\mathbb{Z} \cong S^2 \setminus \{N, S\} \cong \mathbb{C}^* \). Recall the following theorem that we stated in the previous lecture.
Theorem 1 For $z_0 \neq 0$ in \mathbb{C} consider the Riemann surface structure C_{z_0} on the cylinder $C = \mathbb{C}/\mathbb{Z}.T_{z_0}$ and the quotient map π_{z_0} which is holomorphic:

$$\pi_{z_0} : \mathbb{C} \rightarrow \mathbb{C}/\mathbb{Z}.T_{z_0} : z \mapsto \text{equivalence class}(z) = \{z + nz_0 : n \in \mathbb{Z}\}.$$

The set $\{C_w : w \in \mathbb{C}\setminus\{0\}\} \mod$ isomorphism of Riemann surfaces is a singleton and is represented by the Riemann surface structure on \mathbb{C}^\ast.

We now note that it is impossible to find a non-constant (bi)holomorphic map from \mathbb{C}^\ast to Δ^\ast or to Δ_r. For if we do have such a holomorphic map f from \mathbb{C}^\ast to say Δ^\ast, then the map in a deleted neighbourhood of the origin would be bounded as the target set is bounded. By Riemann’s theorem on removable singularities f would extend to a holomorphic map from all of \mathbb{C}. Recall that the Riemann theorem on removable singularities is the following. Let $D \subset \mathbb{C}$ be an open subset of the complex plane, $a \in D$ and f a holomorphic function defined on $D \setminus \{a\}$. The following are then equivalent:

- f is holomorphically extendable to a.
- f is continuously extendable to a.
- There exists a deleted neighborhood of a on which f is bounded.

To sum up we have an entire function f that is bounded, which by Liouville’s theorem has to be constant. All this shows we cannot have a non-constant (bi)holomorphic map from \mathbb{C}^\ast to Δ^\ast. A similar argument shows that there cannot be non-constant holomorphic maps from the punctured plane to Δ_r. Hence the natural Riemann surface structures on Δ^\ast and Δ_r induced from the complex plane are certainly going to be Riemann surface structures on the cylinder different from that induced on \mathbb{C}^\ast. In fact, for different values of r, the corresponding Riemann surfaces Δ_r are not biholomorphic to one another and moreover no Δ_r can be biholomorphic to Δ^\ast.

Theorem 2 The set of isomorphism classes of all Riemann surface structures on the cylinder is given as the disjoint union of three sets, two of these being singletons and the third a one-real-parameter family as follows:

$$\{[\mathbb{C}^\ast]\} \amalg \{[\Delta^\ast]\} \amalg \{[\Delta_r] : r \in (0,1)\}.$$

Here $[X]$ denotes the (biholomorphic or conformal or analytic) isomorphism class of the Riemann surface X.

How do we distinguish between the Riemann surfaces occurring in the above three sets? This is a question about classifying Riemann surfaces up to isomorphism and Covering Space Theory is the tool that is used to answer it.
Definition 1 Let X and \tilde{X} be topological spaces. Assume X and \tilde{X} are pathwise and locally pathwise connected. A map $p : \tilde{X} \rightarrow X$ is called a covering map if:

- p is continuous and surjective, and
- given $x \in X$, \exists an open set U, $x \in U$, such that $p^{-1}(U) = \coprod_{\alpha \in I} V_{\alpha}$, where $V_{\alpha} \subset \tilde{X}$ is open and $p|_{V_{\alpha}} : V_{\alpha} \rightarrow U$ is a homeomorphism.

Observation:
We do not have non-constant holomorphic maps $\mathbb{C}^* \rightarrow \Delta^*$ or $\Delta^* \rightarrow \Delta_r$. However, we do have holomorphic quotient maps $\mathbb{C} \rightarrow \mathbb{C}^*$ or $\mathbb{C} \rightarrow C_w$ which are covering maps.

\[
\begin{array}{c}
\mathbb{C} \\
\downarrow \pi_w \\
\mathbb{C}/\mathbb{Z}.T_w
\end{array}
\]

π_w is surjective and continuous. $\pi_w|_{D} : D \rightarrow \pi_w(D)$ is a homeomorphism (refer to the following image). $\pi_w^{-1}(\pi_w(D)) = \bigcup_{n \in \mathbb{Z}} (D + nw)$ which is a disjoint union of open sets and $\pi_w|_{D+nw} : D + nw \rightarrow \pi_w(D + nw) = \pi_w(D)$ is a homeomorphism. Hence, π_w is a covering map. Consider next the case of the Riemann surface on a torus we obtained by fixing w_1, $w_2 \in \mathbb{C} \setminus \{0\}$ with $w_1/w_2 \notin \mathbb{R}$. The quotient map is

\[
\pi_{w_1,w_2} : \mathbb{C} \rightarrow \mathbb{C}/(\mathbb{Z}.T_{w_1} + \mathbb{Z}.T_{w_2}) = T_{w_1,w_2}.
\]

It is easy to check that π_{w_1,w_2} is a covering map as well.