1. Let $X \sim P(\lambda)$. Find unbiased estimators of $(i) \lambda^3$, $(ii) e^{-\lambda}$, $(iii) \cos \lambda$. (iv) Show that there does not exist unbiased estimators of $1/\lambda$, and $\exp\{-1/\lambda\}$.

2. Let X_1, X_2, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ population. Find unbiased and consistent estimators of the signal to noise ration $\frac{\mu}{\sigma}$ and quantile $\mu + b\sigma$, where b is any given real.

3. Let X_1, X_2, \ldots, X_n be a random sample from a $U(-\theta, 2\theta)$ population. Find an unbiased and consistent estimator of θ.

4. Let X_1, X_2 be a random sample from an exponential population with mean $1/\lambda$. Let $T_1 = \frac{X_1 + X_2}{2}, T_2 = \sqrt{X_1X_2}$. Show that T_1 is unbiased and T_2 is biased. Further, prove that $\text{MSE}(T_1) \leq \text{Var}(T_1)$.

5. Let T_1 and T_2 be unbiased estimators of θ with respective variances σ_1^2 and σ_2^2 and $\text{cov}(T_1, T_2) = \sigma_{12}$ (assumed to be known). Consider $T = \alpha T_1 + (1-\alpha)T_2, 0 \leq \alpha \leq 1$. Show that T is unbiased and find value of α for which $\text{Var}(T)$ is minimized.

6. Let X_1, X_2, \ldots, X_n be a random sample from an $\text{Exp}(\mu, \sigma)$ population. Find the method of moment estimators (MMEs) of μ and σ.

7. Let X_1, X_2, \ldots, X_n be a random sample from a Pareto population with density $f_X(x) = \frac{\beta \alpha^\beta}{x^{\beta+1}}, x > \alpha, \alpha > 0, \beta > 2$. Find the method of moments estimators of α, β.

8. Let X_1, X_2, \ldots, X_n be a random sample from a $U(-\theta, \theta)$ population. Find the MME of θ.

9. Let X_1, X_2, \ldots, X_n be a random sample from a lognormal population with density $f_X(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (\log x - \mu)^2\right\}, x > 0$. Find the MMEs of μ and σ^2.

10. Let X_1, X_2, \ldots, X_n be a random sample from a double exponential (μ, σ) population. Find the MMEs of μ and σ.

Statistical Inference
Test Set 1
Hints and Solutions

1. (i) \(E \{X(X - 1)(X - 2)\} = \lambda^3 \)

(ii) For this we solve estimating equation. Let \(T(X) \) be unbiased for \(e^{-\lambda} \cos \lambda \).

Then \(ET(X) = e^{-\lambda} \cos \lambda \) for all \(\lambda > 0 \).

\[
\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \cos \lambda \text{ for all } \lambda > 0
\]

\[
\Rightarrow \sum_{x=0}^{\infty} T(x) \frac{\lambda^x}{x!} = 1 - \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} - \cdots \text{ for all } \lambda > 0
\]

As the two power series are identical on an open interval, equating coefficients of powers of \(\lambda \) on both sides gives

\(T(x) = 0 \), if \(x = 2m + 1 \),

\(= 1 \), if \(x = 4m \),

\(= -1 \), if \(x = 4m + 2 \), \(m = 0, 1, 2, \ldots \)

(iii) For this we have to solve estimating equation. However, we use Euler’s identity to solve it.

Let \(U(X) \) be unbiased for \(\sin \lambda \). Then

\[
\sum_{x=0}^{\infty} U(x) \frac{\lambda^x}{x!} = \frac{1}{2i} e^{i\lambda} (e^{i\lambda} - e^{-i\lambda}) \text{ for all } \lambda > 0
\]

\[
= \frac{1}{2i} (e^{(1+i)\lambda} - e^{-(1-i)\lambda}) \text{ for all } \lambda > 0
\]

\[
= \frac{1}{2i} \left(\sum_{k=0}^{\infty} \frac{\lambda^k (1+i)^k}{k!} - \sum_{k=0}^{\infty} \frac{\lambda^k (1-i)^k}{k!} \right) \text{ for all } \lambda > 0.
\]

Applying De-Moivre’s Theorem on the two terms inside the parentheses, we get

\[
\sum_{x=0}^{\infty} U(x) \frac{\lambda^x}{x!} = \frac{1}{2i} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \left[(\sqrt{2})^k \left(\cos \frac{\pi x}{4} + i \sin \frac{\pi x}{4} \right)^k - (\sqrt{2})^k \left(\cos \left(-\frac{\pi x}{4} \right) + i \sin \left(-\frac{\pi x}{4} \right) \right)^k \right]
\]

\[
= \frac{1}{2i} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \left[(\sqrt{2})^k \left(\cos \frac{k\pi x}{4} + i \sin \frac{k\pi x}{4} \right) - (\sqrt{2})^k \left(\cos \left(-\frac{k\pi x}{4} \right) + i \sin \left(-\frac{k\pi x}{4} \right) \right) \right]
\]

\[
= \sum_{k=0}^{\infty} \frac{(\sqrt{2})^k \lambda^k}{k!} \sin \left(\frac{k\pi x}{4} \right) \text{ for all } \lambda > 0
\]

Equating the coefficients of powers of \(\lambda \) on both sides gives

\(U(x) = (\sqrt{2})^x \sin \left(\frac{\pi x}{4} \right), x = 0, 1, 2, \ldots \)

In Parts (iv) and (v), we can show in a similar way that estimating equations do not have any solutions.
2. Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \), and \(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \).

Then \(\bar{X} \sim N(\mu, \sigma^2/n) \), and \(W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} \). It can be seen that \[E(W^{1/2}) = \frac{\sqrt{2}}{2} \frac{n-1}{n-2} \quad \text{and} \quad E(W^{-1/2}) = \frac{\sqrt{2}}{2} \frac{n-1}{n-2} \]. Using these, we get unbiased estimators of \(\sigma \) and \(\frac{1}{\sigma} \) as \(T_1 = \frac{\sqrt{n-1}}{n-2} \frac{S}{\bar{X}} \) and \(T_2 = \frac{\sqrt{2}}{n-1} \frac{\sqrt{n-2}}{S} \) respectively. As \(\bar{X} \) and \(S^2 \) are independently distributed, \(U_1 = \frac{\sqrt{n-1}}{n-2} \frac{S}{\bar{X}} \) is unbiased for \(\frac{\mu}{\sigma} \). Further, \(U_2 = \bar{X} + bT_1 \) is unbiased for \(\mu + b\sigma \). As \(\bar{X} \) and \(S^2 \) are consistent for \(\mu \) and \(\sigma^2 \) respectively, \(U_1 \) and \(U_2 \) are also consistent for \(\frac{\mu}{\sigma} \) and \(\mu + b\sigma \) respectively.

3. As \(\mu_i = \frac{3\theta}{2}, T = \frac{2\bar{X}}{3} \) is unbiased for \(\theta \). \(T \) is also consistent for \(\theta \).

4. As \(E(X_i) = \frac{1}{\lambda}, T_i \) is unbiased. Also \(X_1 \) and \(X_2 \) are independent. So

\[
E(T_2) = E\left(\frac{1}{\sqrt{\lambda}} \right) = \left(E\left(\frac{1}{\sqrt{\lambda}} \right) \right)^2 = \left(\frac{1}{2} \sqrt{\pi/\lambda} \right)^2 = \frac{\pi}{4\lambda}, \quad \text{Var}(T_i) = \frac{1}{2\lambda^2}.
\]

\[
MS \; KT_2 = E\left(\frac{1}{\sqrt{\lambda}} \right)^2 = E(X_i^2) - \frac{2}{\lambda} E\left(\frac{1}{\sqrt{\lambda}} \right) + \frac{1}{\lambda^2}
\]

\[
= \frac{2}{\lambda^2} \left(1 - \frac{\pi}{4} \right)
\]

5. The minimizing choice of \(\alpha \) is obtained as \(\frac{\sigma^2 - \sigma_{12}}{\sigma_i^2 + \sigma_{12}^2 - 2\sigma_{12}} \).

6. \(f(x) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma} \right), x > \mu, \sigma > 0. \) \(\mu' = \mu + \sigma, \mu'_2 = (\mu + \sigma)^2 + \sigma^2 \).

So \(\mu = \frac{1}{2}(\mu' - \mu'^2 - \mu'^2), \sigma = \sqrt{\mu'_2 - \mu'^2} \). The method of moments estimators for \(\mu \) and \(\sigma \) are therefore given by

\[
\hat{\mu}_{MM} = \bar{X} - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \bar{X})^2, \quad \hat{\sigma}_{MM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}.
\]
7. \(\mu'_1 = \frac{\beta \alpha}{\beta - 1}, \mu'_2 = \frac{\beta \alpha^2}{\beta - 2} \). So \(\alpha = -\frac{\mu'_1}{\sqrt{\mu'_2 - \mu'_1^2}}, \beta = 1 + \sqrt{\frac{\mu'_2}{\mu'_2 - \mu'_1^2}} \).

The method of moments estimators for \(\alpha \) and \(\beta \) are therefore given by

\[
\hat{\alpha}_{MM} = \frac{\bar{X} \sqrt{\sum_{i=1}^{n} X_i^2}}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{i=1}^{n} X_i^2}}, \quad \hat{\beta}_{MM} = 1 + \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}}.
\]

8. Since \(\mu'_1 = 0 \), we consider \(\mu'_2 = \frac{\theta^2}{3} \). So \(\hat{\theta}_{MM} = \sqrt{\frac{3}{n} \sum_{i=1}^{n} X_i^2} \).

9. \(\mu'_1 = e^{\mu + \sigma^2/2}, \mu'_2 = e^{2\mu + 2\sigma^2} \). So \(\mu = \log \left(\frac{\mu'_2}{\sqrt{\mu'_1}} \right), \sigma^2 = \log \left(\frac{\mu'_2}{\mu'_1} \right) \) and the method of moments estimators for \(\mu \) and \(\sigma^2 \) are therefore given by

\[
\hat{\mu}_{MM} = \log \left(\frac{\bar{X}^2}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_i^2}} \right), \quad \hat{\sigma}_{MM}^2 = \log \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \right).
\]

10. \(f(x) = \frac{1}{2\sigma} \exp \left(-\frac{|x - \mu|}{\sigma} \right), x \in \mathbb{R}, \mu \in \mathbb{R}, \sigma > 0. \mu'_1 = \mu, \mu'_2 = \mu^2 + 2\sigma^2 \).

So \(\mu = \mu'_1, \sigma = \sqrt{\frac{1}{2} (\mu'_2 - \mu'_1^2)} \). The method of moments estimators for \(\mu \) and \(\sigma \) are therefore given by

\[
\hat{\mu}_{MM} = \bar{X}, \quad \hat{\sigma}_{MM} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} (X_i - \bar{X})^2}.
\]