Module 3

Problem Sheet

1. Show that an i.i.d sequence of continuous random variable with common probability density function \(f \) is strictly stationary.

2. Find (under certain conditions) whether the stochastic process \(\{X(t), t \in T\} \) with probability distribution given by:
 \[
P(X(t) = n) = \begin{cases}
 \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2, \ldots \\
 \frac{at}{1+at}, & n = 0
 \end{cases}
 \]
is stationary.

3. Let \(X(t) = A_0 + A_1 t + A_2 t^2 \) where \(A_i \)'s are uncorrelated random variables with mean 0 and variance 1. Find the mean function and covariance function of \(X(t) \).

4. Let \(Y_n = a_0 X_n + a_1 X_{n-1}, n = 1, 2, \ldots \) where \(a_0, a_1 \) are constants and \(X_0, X_1, \ldots \), are i.i.d. random variables with mean 0 and variance \(\sigma^2 \).
 (a) Is \(\{Y_n, n \geq 1\} \) covariance stationary?

5. Consider autoregressive process of order 1, i.e.
 \[X_t = c + \phi X_{t-1} + \varepsilon_t\]
 where \(\varepsilon_t \) is white noise with mean 0 and variance \(\sigma^2 \), \(c \) is a constant. Assume that the mean of the random variable \(X_t \) is identical for all values of \(t \), denoted by \(\mu \). Show that the process is wide sense stationary for \(|\phi| < 1 \).

6. Let \(\{N(t), t \geq 0\} \) be a Poisson Process. Prove or disprove that \(\{X(t) = N(t+L) - N(t), t \geq 0\} \), where \(L \) is a positive constant, is covariance or wide-sense stationary.

7. Let \(Z_1 \) and \(Z_2 \) be two independent normal random variables with mean 0 and variance \(\sigma^2 \). Define
 \[X(t) = Z_1 \cos(\lambda t) + Z_2 \sin(\lambda t)\]
 Then show that \(\{X(t), t \in T\} \) is a second order stationary process.

©Copyright Reserved IIT Delhi
Answers to Problem Sheet

Ans 1. Let X_1, X_2, \ldots, be an i.i.d. sequence of continuous random variables.

Let n be any positive integer.

Let $m \in \mathbb{Z}$ such that $n + m > 0$.

Then $P(X_{1+m}, X_{2+m}, \ldots, X_{n+m}) \in B$ and its distribution is:

$$\int \cdots \int_B f(x_{1+m})f(x_{2+m})\cdots f(x_{n+m})dx_{1+m}dx_{2+m}\cdots dx_{n+m}$$

Since X_i’s are i.i.d. random variables and $x_{1+m}, x_{2+m}, \ldots x_{n+m}$ are just dummy variables of integration, we may replace them by x_1, x_2, \ldots, x_n.

Hence above integral is equal to

$$\int \cdots \int_B f(x_1)f(x_2)\cdots f(x_n)dx_1dx_2\cdots dx_n$$

which is independent of m and hence the process is strictly stationary.

Ans 2. Given $P[X(t) = n] = \left\{ \begin{array}{ll} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2, \ldots \\ \frac{at}{1+at}, & n = 0 \end{array} \right.$

(i) $E[X(t)] = \sum_{n=0}^{\infty} nP(X(t) = n) = \sum_{n=1}^{\infty} \frac{n(at)^{n-1}}{(1+at)^{n+1}} = \frac{1}{(1+at)^2}(1+at)^2 = 1$

(ii) $E[X^2(t)] = \sum_{n=1}^{\infty} n^2 \frac{(at)^{n-1}}{(1+at)^{n+1}} = \frac{1}{(1+at)^2}\sum_{n=1}^{\infty} n^2 \left(\frac{at}{1+at} \right)^{n-1}$

Ans 3. Let $X(t) = A_0 + A_1 t + A_2 t^2$ where

$E(A_i) = 0 \forall i$, $\text{Var}(A_i) = 1 \forall i$ and $\text{Cov}(A_i, A_j) = 0 \forall i \neq j$.

(a) Mean function of $X(t)$:

$E[X(t)] = E[A_0 + A_1 t + A_2 t^2] = E[A_0] + t E[A_1] + t^2 E[A_2] = 0$

(b) Covariance function of $X(t)$:

$\text{Cov}(X(t_1), X(t_2)) = E[X(t_1)X(t_2)] - E[X(t_1)]E[X(t_2)]$

$= E[X(t_1)X(t_2)]$

$= E[(A_0 + A_1 t_1 + A_2 t_1^2)(A_0 + A_1 t_2 + A_2 t_2^2)]$

$= E[A_0^2 + A_0 A_1 t_2 + A_0 A_2 t_2^2 + A_1 A_0 t_1 + A_1^2 t_1 t_2 + A_1 A_2 t_2^2 + A_2 A_0 t_1^2 + A_1 A_2 t_1^2 t_2 + A_2 A_2 t_1^2 t_2]$

©Copyright Reserved IIT Delhi
Now, as Cor(A_i, A_j) = 0 ∀ i ≠ j, therefore:

Hence

\[
\text{Cov}(X(t_1), X(t_2)) = E[A_1^2] + t_1E[A_0]E[A_1] + t_2E[A_0]E[A_2] + t_1t_2E[A_1]E[A_2] + t_1^2E[A_0]E[A_1] + t_2^2E[A_0]E[A_2] + t_1t_2E[A_1]E[A_2] + t_1^2t_2E[A_2] + t_1^2t_2E[A_2] = 1 + t_1t_2 + t_1^2t_2 \] (\(\because E[A_i] = 0 \) ∀i).

Ans 4. \(Y_n = a_0X_n + a_1X_{n-1} \), \(n = 1, 2, \ldots \) where \(a_i \)'s are constants and \(X_0, X_1, \ldots, \) are i.i.d's random variables with \(E(X_i) = 0 \) and \(\text{Var}X_i = \sigma^2 \).

(a) Is \(Y_n \) covariance stationary:

(i) \(E[Y_n] = E[a_0X_n + a_1X_{n-1}] = 0 \)

(ii) \(E[Y_n^2] = E[(a_0X_n + a_1X_{n-1})^2] \)
\[
= E[a_0^2X_n^2 + a_1^2X_{n-1}^2 + 2a_0a_1X_nX_{n-1}] = a_0^2\sigma^2 + a_1^2\sigma^2 + 2a_0a_1E(X_nX_{n-1}) = a_0^2\sigma^2 + a_1^2\sigma^2 + a_0a_1(E(X_n)E(X_{n-1})) \] (\(\because \) they are i.i.d)
\[
= a_0^2\sigma^2 + a_1^2\sigma^2 (\because E(X_i) = 0)
\]

(iii) \(\text{Cov}(Y_n, Y_m) = \text{Cov}(a_0X_n + a_1X_{n-1}, a_0X_m + a_1X_{m-1}) \)
\[
= E[(a_0X_n + a_1X_{n-1})(a_0X_m + a_1X_{m-1})] (\because E(Y_n) = E(Y_m) = 0) = E[a_0^2X_nX_m + a_0a_1X_nX_{m-1} + a_1a_0X_mX_{n-1} + a_1^2X_{m-1}X_{n-1}] \]
\[
= \begin{cases}
 a_0^2\sigma^2 + a_1^2\sigma^2, & n=m; \\
 a_0a_1\sigma^2, & n=m-1; \\
 a_0a_1\sigma^2, & n=m+1; \\
 0, & \text{otherwise.}
\end{cases}
\]

which is a function of \(n - m \).

Hence \(Y_n \) is covariance stationary.

Ans 5. (i) First calculating expectation
\[E(X_t) = E(c + \phi X_{t-1} + \varepsilon_t) \]
\[\mu = c + \phi \mu + 0 \]
\[\Rightarrow \mu = \frac{c}{1-\phi} \]
which is independent of \(t \).

\[\text{Var}(X_t) = \sigma^2_X \text{ and } \] (1)

\[\text{Var}(X_t) = \text{Var}[c + \phi X_{t-1} + \varepsilon_t] \]
\[= \phi^2 \text{Var}(X_{t-1}) + \sigma^2 \varepsilon \] (2)

Since \(\{X_t : t \in T\} \) are identical, \(\Rightarrow \text{Var}(X_t) = \text{Var}(X_{t-1}) \)

Equating (1) and (2):
\[\sigma^2_X = \phi^2 \sigma^2_X + \sigma^2 \varepsilon \]
\[\sigma^2_X = \frac{\sigma^2}{1-\phi^2} \Rightarrow \text{Var}(X_t) = \frac{\sigma^2}{1-\phi^2} \]
which exists and is finite for \(|\phi| < 1 \).

(iii) Since \(X_t \)'s are identical
\[E(X_{t_1}, X_{t_2}) = \mu^2 \text{ and } \]
\[\text{Cov}(X_{t_1}, X_{t_2}) = 0 \]
which are functions of \(|t_1 - t_2| \).

Hence the process is wide sense stationary.

Ans 6. We have \(X(t) = N(t+L) - N(t) \sim P(\lambda(t+L-t)) = P(\lambda L) \)

(a) \(E(X(t)) = \lambda L \) which is independent of \(t \).

(b) \(E(X^2(t)) = \lambda L + (\lambda L)^2 < \infty \) \(\forall t \).

(c) Let \(s < t \).

\[\text{cov}(X(t), X(s)) = E(X(t)X(s)) - E(X(t))E(X(s)) \]
\[= E((X(t) - X(s) + X(s))X(s)) - (\lambda L)^2 \]
\[= E(X(t) - X(s))E(X(s)) + E(X^2(s)) - (\lambda L)^2 \]
\[= 0 \ast E(X(s)) + \lambda L \]
\[= \lambda L \]

which is constant function. So we can consider it as a function of \(t - s \).

From (a),(b) and (c) \{\(X(t), \ t \geq 0 \}\} is covariance stationary.
Ans 7. (a) $E(X(t)) = E(Z_1)\cos(\lambda t) + E(Z_2)\sin(\lambda t)$

$= 0$ which is independent of t.

(b) $E(X^2(t)) = \cos^2(\lambda t)E(Z_1^2) + \sin^2(\lambda t)E(Z_2^2) + 2\cos(\lambda t)\sin(\lambda t)E(Z_1)E(Z_2)$

$= \cos^2(\lambda t)\sigma^2 + \sin^2(\lambda t)\sigma^2 + 2\cos(\lambda t)\sin(\lambda t) \ast 0$

$= \sigma^2 < \forall t$

From (a),(b) $\{X(t), \ t \geq 0\}$ is second order stationary.