Self Evaluation Test

1. Let \(\lambda \) be an eigen value of a linear operator \(T \) on a vector space \(V(\mathbb{F}) \). Let \(V_\lambda \) denote the set of all eigen vectors of \(T \) corresponding to eigen value \(\lambda \). Prove that \(V_\lambda \) is a subspace of \(V(\mathbb{F}) \).

Solution. Here \(V_\lambda = \{ v \in V \mid v \) is an eigen vector of \(T \} \).

\[V_\lambda = \{ v \in V \mid T(v) = \lambda v \}. \]

Given is that \(\lambda \) be an eigen value of \(T \).

\[\exists \ a \ non \ zero \ vector \ v' \ such \ that \ T(v') = \lambda v' \ so \ that \ v' \in V_\lambda \Rightarrow V_\lambda \neq \phi \]

i.e. \(V_\lambda \) is non-empty set.

let \(v_1, v_2 \in V_\lambda \) and \(\alpha, \beta \in \mathbb{F} \)

Since \(v_1, v_2 \in V_\lambda \Rightarrow Tv_1 = \lambda v_1 \) and \(Tv_2 = \lambda v_2 \)

Now \[T(\alpha v_1 + \beta v_2) = T(\alpha v_1) + T(\beta v_2) \]

\[= \alpha T(v_1) + \beta T(v_2) \]

\[= \alpha \lambda v_1 + \beta \lambda v_2 \]

\[= \lambda (\alpha v_1 + \beta v_2) \]

\[\Rightarrow \alpha v_1 + \beta v_2 \) is an eigen vector corresponding to eigen value \(\lambda \)

\[\Rightarrow \alpha v_1 + \beta v_2 \in V_\lambda \]

Hence \(V_\lambda \) is a subspace of \(V \).

2. Prove that the non zero eigen vectors corresponding to distinct eigen values of a linear operator are linearly independent.

Solution. let \(v_1, v_2, \ldots , v_m \) be \(m \) non-zero eigen vectors of a linear operator \(T : V \to V \) corresponding to distinct eigen values \(\lambda_1, \lambda_2, \ldots , \lambda_m \) respectively.

\[\Rightarrow T(v_1) = \lambda_1 v_1, \ T(v_2) = \lambda_2 v_2, \ldots , \ T(v_m) = \lambda_m v_m \]

We want to show that \(v_1, v_2, \ldots , v_m \) are L.I. vectors. We shall prove this result by induction on \(m \).

Step 1. Let \(m = 1 \)

Then \(v_1 \) is L.I. since \(v_1 \) is a non-zero vector.

\[\therefore \ the \ result \ is \ true \ for \ m = 1. \]
Step II. Assume the result is true for the number of vectors less than m.

Step III. Now, we shall show the result is true for m vectors.

Let
\[a_1 v_1 + a_2 v_2 + \ldots + a_m v_m = 0 \quad (2) \]

\[\Rightarrow T(a_1 v_1 + a_2 v_2 + \ldots + a_m v_m) = T(0) \]

\[\Rightarrow a_1 T(v_1) + a_2 T(v_2) + \ldots + a_m T(v_m) = 0 \quad [\text{Since } T \text{ is a L.T.}] \]

\[\Rightarrow a_1 (\lambda_1 v_1) + a_2 (\lambda_2 v_2) + \ldots + a_m (\lambda_m v_m) = 0 \quad [\text{Using (1)}] \]

\[\Rightarrow a_1 v_1 + a_2 v_2 + \ldots + a_m (\lambda_v v_m) = 0 \quad (3) \]

Multiplying (2) on both sides by λ_m, we get

\[a_1 (\lambda_1 v_1) + a_2 (\lambda_2 v_2) + \ldots + a_m (\lambda_m v_m) = 0 \quad (4) \]

\[\therefore \text{eq}(3)-\text{eq}(4) \text{ gives} \]

\[a_1 (\lambda_1 - \lambda_m) v_1 + a_2 (\lambda_2 - \lambda_m) v_2 + \ldots + a_{m-1} (\lambda_{m-1} - \lambda_m) v_{m-1} = 0 \]

\[\Rightarrow a_1 (\lambda_1 - \lambda_m) = 0, \ a_2 (\lambda_2 - \lambda_m) = 0, \ldots, a_{m-1} (\lambda_{m-1} - \lambda_m) = 0 \]

\[(\because \ v_1, v_2, \ldots, v_{m-1} \text{ are L.I. because of Step II}) \]

\[\Rightarrow a_1 = 0, a_2 = 0, \ldots, a_{m-1} = 0 \]

\[(\because \ \lambda_i - \lambda_m \neq 0 \text{ for } 1 \leq i \leq m-1 \text{ as } \lambda_i \text{ are distinct}) \]

Putting these in (2), we get

\[a_m v_m = 0 \]

\[\Rightarrow a_m = 0 \quad [\because v_m \neq 0] \]

Thus we have $a_1 = a_2 = \ldots = a_m = 0$

\[\therefore \text{the vectors } v_1, v_2, \ldots, v_m \text{ are L.I.} \]

Hence the result

3. Let λ be an eigen value of an invertible operator T on a vector space $V(F)$. Prove that λ^{-1} is an eigen value of T^{-1}

Solution. Given T be invertible operator.

\[\Rightarrow T \text{ is non-singular.} \]

\[\Rightarrow \exists \text{ an eigen value } \lambda \neq 0. \]

\[\Rightarrow \lambda^{-1} \text{ exists.} \]

Since λ is an eigen value of T, therefore there exists a non zero vector $v \in V$ such that

\[T(v) = \lambda v \]

©Copyright Reserved IIT Delhi
operating T^{-1} on both sides

\[T^{-1}(T(v)) = T^{-1}(\lambda v) \]

\[v = \lambda T^{-1}(v) \]

\[\frac{1}{\lambda} v = T^{-1}(v) \]

or $T^{-1}(v) = \frac{1}{\lambda} v = \lambda^{-1}(v)$

\[\lambda^{-1} \text{ is an eigen value of } T^{-1} \]

Hence the result.

4. Let V be vector space of all real valued continuous functions. Let T be a L.O. on V such that

\[T(f(x)) = \int_{0}^{x} f(t) \, dt \]

Show T has no eigen values.

Solution. If λ is an eigen value of T, then by definition of eigen value, \exists a non zero $f(x) \in V$ such that

\[T(f(x)) = \lambda f(x) \]

\[\Rightarrow \int_{0}^{x} f(t) \, dt = \lambda f(x) \tag{1} \]

Differentiating both sides we get $f(x) = \lambda f'(x)$

\[\Rightarrow \frac{f'(x)}{f(x)} = \frac{1}{\lambda} \]

Integrating, we get

\[\log f(x) = \frac{x}{\lambda} + C, \text{ } C \text{ is constant of integration} \]

\[\Rightarrow f(x) = e^{\frac{x}{\lambda} + C} = e^{C} e^{\frac{x}{\lambda}} = ae^{\frac{x}{\lambda}} \text{ say} \]

\[\therefore f(0) = ae^{0} = a \]

so that $f(x) = f(0)e^{\frac{x}{\lambda}} \tag{ii}$

changing variable x by t we have

\[f(t) = f(0) e^{\frac{t}{\lambda}} \]

integrating both sides from 0 to x we get

\[\int_{0}^{x} f(t) \, dt = f(0) \int_{0}^{x} e^{\frac{t}{\lambda}} \, dt \]

\[\lambda f(x) = f(0) \left[\frac{e^{\frac{x}{\lambda}}} {\frac{x}{\lambda}} \right]_{0}^{x} \text{ (using (i) for L.H.S)} \]

\[\lambda f(0)e^{\frac{x}{\lambda}} = f(0)\lambda(e^{\frac{x}{\lambda}} - 1) \text{ (using (ii) for L.H.S)} \]

\[e^{\frac{x}{\lambda}} = e^{\frac{x}{\lambda}} - 1 \]

©Copyright Reserved IIT Delhi
\[
\Rightarrow 0 = -1 \text{ which is wrong.}
\]
So that \(T \) has no eigen values.

5. Let \(T : V \to V \) be a Linear operator on a finite dimensional vector space \(V(\mathbb{F}) \). Prove that the number of eigen values of \(T \) cannot exceed the dimension of vector space \(V(\mathbb{F}) \).

Solution. Given \(V \) is a finite dimensional vector space over \(\mathbb{F} \).

Let us assume \(\dim V = n \).

Now \(\lambda \) is an eigen value of \(T \) iff \(\det (\lambda I - T) = 0 \)
i.e., the eigen values of \(T \) are the roots of equation
\[
\det(xI - T) = 0 \tag{1}
\]
Since \(\dim V = n \), so any matrix representation of \(T \) is of order \(n \times n \).

\[\Rightarrow\] the matrix representation of \(xI - T \) is also of order \(n \times n \).

But the eigen values of \(T \) are roots of this polynomial \([\text{because of (i)}]\)

\[\therefore\] number of eigen values cannot exceed the degree \(n \) of the polynomial \(\det(xI - T) \).

Hence the number of eigen values of \(T \) cannot exceed the \(\dim V \).