Measure (Lectures 5, 6, 7, 8 and 9)

2.1. Set functions

(2.1) Let X be any countably infinite set and let
\[C = \{ \{x\} \mid x \in X \}. \]
Show that the algebra generated by C is
\[\mathcal{F}(C) := \{ A \subseteq X \mid A \text{ or } A^c \text{ is finite} \}. \]

Let $\mu : \mathcal{F}(C) \rightarrow [0, \infty)$ be defined by
\[\mu(A) := \begin{cases}
0 & \text{if } A \text{ is finite,} \\
1 & \text{if } A^c \text{ is finite.}
\end{cases} \]

Show that μ is finitely additive but not countably additive. If X is an
uncountable set, show that μ is also countably additive.

(2.2) Let $X = \mathbb{N}$, the set of natural numbers. For every finite set $A \subseteq X$, let
\(\#A \) denote the number of elements in A. Define for $A \subseteq X$,
\[\mu_n(A) := \frac{\#\{ m : 1 \leq m \leq n, m \in A \}}{n}. \]

Show that μ_n is countably additive for every n on $\mathcal{P}(X)$. In a sense, μ_n is
the proportion of integers between 1 to n which are in A. Let
\[C = \{ A \subseteq X \mid \lim_{n \rightarrow \infty} \mu_n(A) \text{ exists} \}. \]

Show that C is closed under taking complements, finite disjoint unions and
proper differences.
(2.3) Let \(\mu : \tilde{I} \cap (0, 1] \rightarrow [0, \infty] \) be defined by
\[
\mu(a, b) := \begin{cases}
 b - a & \text{if } a \neq 0, 0 < a < b \leq 1, \\
 +\infty & \text{otherwise}.
\end{cases}
\]
(Recall that \(\tilde{I} \cap (0, 1] \) is the class of all left-open right-closed intervals in \((0, 1] \).)
Show that \(\mu \) is finitely additive. Is \(\mu \) countably additive also?

(2.4) Let \(\mathcal{A} \) be an algebra of subsets of a set \(X \).
(i) Let \(\mu_1, \mu_2 \) be measures on \(\mathcal{A} \), and let \(\alpha \) and \(\beta \) be nonnegative real numbers. Show that \(\alpha \mu_1 + \beta \mu_2 \) is also a measure on \(\mathcal{A} \).
(ii) For any two measures \(\mu_1, \mu_2 \) on \(\mathcal{A} \), we say \(\mu_1 \leq \mu_2 \) if \(\mu_1(E) \leq \mu_2(E), \forall E \in \mathcal{A} \).
Let \(\{\mu_n\}_{n \geq 1} \) be a sequence of measures on \(\mathcal{A} \) such that
\[
\mu_n \leq \mu_{n+1}, \forall n \geq 1.
\]
Define \(\forall E \in \mathcal{A} \),
\[
\mu(E) := \lim_{n \rightarrow \infty} \mu_n(E).
\]
Show that \(\mu \) is also a measure on \(\mathcal{A} \) and \(\forall E \in \mathcal{B} \),
\[
\mu(E) = \sup \{\mu_n(E) \mid n \geq 1\}.
\]
(2.5) Let \(X \) be a compact topological space and \(\mathcal{A} \) be the collection of all those subsets of \(X \) which are both open and closed. Show that \(\mathcal{A} \) is an algebra of subsets of \(X \). Further, every finitely additive set function on \(\mathcal{A} \) is also countably additive.

Optional Exercises

(2.6) Let \(X \) be a nonempty set.
(a) Let \(\mu : \mathcal{P}(X) \rightarrow [0, \infty) \) be a finitely additive set function such that \(\mu(A) = 0 \) or 1 for every \(A \in \mathcal{P}(X) \). Let \(\mathcal{U} = \{A \in \mathcal{P}(X) \mid \mu(A) = 1\} \).
Show that \(\mathcal{U} \) has the following properties:
(i) \(\emptyset \notin \mathcal{U} \).
(ii) If \(A \in X \) and \(B \supseteq A \), then \(B \in \mathcal{U} \).
(iii) If \(A, B \in \mathcal{U} \), then \(A \cap B \in \mathcal{U} \).
(iv) For every \(A \in \mathcal{P}(X) \), either \(A \in \mathcal{U} \) or \(A^c \in \mathcal{U} \).
(Any \(\mathcal{U} \subseteq \mathcal{P}(X) \) satisfying (i) to (iv) is called an \textbf{ultrafilter} in \(X \).)
(b) Let \(\mathcal{U} \) be any ultrafilter in \(X \). Define \(\mu : \mathcal{P}(X) \rightarrow [0, \infty) \) by
\[
\mu(A) := \begin{cases}
 1 & \text{if } A \in \mathcal{U}, \\
 0 & \text{if } A \notin \mathcal{U}.
\end{cases}
\]
Show that \(\mu \) is finitely additive.
2.2. Countably additive set functions on intervals

(2.7) Let \(F(x) = [x] \), the integral part of \(x, x \in \mathbb{R} \). Describe the set function \(\mu_F \) induced by \(F \) on the class \(\mathcal{I} \) of all left-open right-closed intervals.

(2.8) Let \(F : \mathbb{R} \rightarrow \mathbb{R} \) be a distribution function and \(\alpha \in \mathbb{R} \). Show that \(F_1 := F + \alpha \) is also a distribution function and \(\mu_F = \mu_{F_1} \). Is the converse true?

(2.9) (i) Let \(C \) be a collection of subsets of a set \(X \) and \(\mu : C \rightarrow [0, \infty] \) be a set function. If \(\mu \) is a measure on \(C \), show that \(\mu \) is finitely additive. Is \(\mu \) monotone? Countably subadditive?

(ii) If \(C \) be a semi-algebra, then \(\mu \) is countably subadditive iff \(\forall A \in C \) with \(A \subseteq \bigcup_{i=1}^{\infty} A_i, A_i \in C \) implies

\[
\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i).
\]

2.3. Set functions on algebras

(2.10) Let \(A \) be an algebra of subsets of a set \(X \) and \(\mu : A \rightarrow [0, \infty] \) be a finitely additive set function.

(i) Show that in general, for a decreasing sequence \(\{A_k\}_{k \geq 1} \) in \(A \) with \(\bigcap_{k=1}^{\infty} A_k = A \in A \) need not imply that \(\mu(A) = \lim_{n \to \infty} \mu(A_n) \), even if \(\mu \) is countably additive.

(ii) If \(\mu(X) < +\infty \), show that the following statements are equivalent:

(a) \(\lim_{k \to \infty} \mu(A_k) = 0 \), whenever \(\{A_k\}_{k \geq 1} \) is a sequence in \(A \) with \(A_k \supseteq A_{k+1} \forall k, \) and \(\bigcap_{k=1}^{\infty} A_k = \emptyset \).

(b) \(\mu \) is countably additive.

(2.11) Let \(A \) be a \(\sigma \)-algebra and \(\mu : A \rightarrow [0, \infty] \) be a measure. For any sequence \(\{E_n\}_{n \geq 1} \) in \(A \), show that

(i) \(\mu \left(\lim_{n \to \infty} \inf E_n \right) \leq \lim_{n \to \infty} \inf \mu(E_n) \).

(ii) \(\mu \left(\lim_{n \to \infty} \sup E_n \right) \geq \lim_{n \to \infty} \sup \mu(E_n) \).

(Hint: For a sequence \(\{E_n\}_{n \geq 1} \) of subsets of a set \(X \),

\[
\liminf_{n \to \infty} E_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k \quad \leq \quad \limsup_{n \to \infty} E_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.
\]
Optional Exercise

(2.12) Let \mathcal{A} be a semi-algebra of subsets of a set X and $\mu : \mathcal{A} \to [0, \infty]$ be a finitely additive set function. Show that the following statements are equivalent:

(a) $\lim_{k \to \infty} \mu(A_k) = 0$, whenever $\{A_k\}_{k \geq 1}$ is an increasing sequence in \mathcal{A} with $\bigcup_{k=1}^{\infty} A_k = A \in \mathcal{A}$.

(b) μ is countably additive.

(Hint: Extend μ to the algebra generated by \mathcal{A}.)

2.4. Uniqueness problem for measures

(2.13) Let \mathcal{A} be an algebra of subsets of a set X. Let μ_1 and μ_2 be σ-finite measures on a σ-algebra $\mathcal{S}(\mathcal{A})$ such that $\mu_1(A) = \mu_2(A) \ \forall \ A \in \mathcal{A}$. Then, $\mu_1(A) = \mu_2(A) \ \forall A \in \mathcal{S}(\mathcal{A})$.

(2.14) Show that a measure μ defined on an algebra \mathcal{A} of subsets of a set X is finite if and only if $\mu(X) < +\infty$.