1. Use the Seifert Van Kampen theorem to compute the fundamental group of the double torus.

2. Let K be a compact subset of \mathbb{R}^3 and regard S^3 as the one point compactification of \mathbb{R}^3. Show that $\pi_1(\mathbb{R}^3 - K) = \pi_1(S^3 - K)$.

3. If C is the circle in \mathbb{R}^3 given by the pair of equations
 \[x^2 + z^2 = 1, \quad z = 0, \]
 show that $\pi_1(\mathbb{R}^3 - C) = \mathbb{Z} \oplus \mathbb{Z}$. Let C' be the circle given by
 \[(y - 1)^2 + z^2 + 1, \quad x = 0. \]
 Show that $\pi_1(\mathbb{R}^3 - C \cup C') = \mathbb{Z} \oplus \mathbb{Z}$. Hint: Use stereographic projection.

4. Show that the complement of a line in \mathbb{R}^4 is simply connected.

5. Calculate the fundamental group of $\mathbb{C}^2 - \{(z_1, z_2)/z_1z_2 = 0\}$.