Module 2: General Topology
Lecture 3: More Preliminaries from general topology

Exercises:

1. Prove that any continuous function \(f : [-1, 1] \to [-1, 1] \) has a fixed point, that is to say, there exists a point \(x \in [-1, 1] \) such that \(f(x) = x \).

2. Prove that the unit interval \([0, 1]\) is connected. Is it true that if \(f : [0, 1] \to [0, 1] \) has connected graph then \(f \) is continuous? What if connectedness is replaced by path connectedness?

3. Suppose \(X \) is a locally compact, non-compact, connected Hausdorff space, is its one point compactification connected? What happens if \(X \) is already compact and Hausdorff?

4. Show that any connected metric space with more than one point must be uncountable. Hint: Use Tietze's extension theorem and the fact that the connected sets in the real line are intervals.

5. Show that the complement of a two dimensional linear subspace in \(\mathbb{R}^4 \) is connected. Hint: Denoting by \(V \) be the two dimensional vector space, show that \(\Sigma = \{ x/\|x\| \mid x \in \mathbb{R}^4 - V \} \) is connected using stereographic projection or otherwise.

6. How many connected components are there in the complement of the cone
\[
x_1^2 + x_2^2 + x_3^3 - x_4^2 = 0
\]
in \(\mathbb{R}^4 \)? Hint: The complement of this cone is filled up by families of hyperboloids. Examine if there is a connected set \(B \) meeting each member of a given family.

7. A map \(f : X \to Y \) is said to be a local homeomorphism if for \(x \in X \) there exist neighborhoods \(U \) of \(x \) and \(V \) of \(f(x) \) such that \(f \big|_U : U \to V \) is a homeomorphism. If \(f : X \to Y \) is a local homeomorphism and a proper map, then for each \(y \in Y \), \(f^{-1}(y) \) is a finite set. Show that the map \(f : \mathbb{C} - \{1, -1\} \to \mathbb{C} \) given by \(f(z) = z^3 - 3z \) is a local homeomorphism. Is it a proper map?