- Deer (D)
- Rabbit (R)

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>1,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

2 Nash Equilibria
Hunting Game

2 Nash Equilibria

(D, D) — Pareto optimal

(R, R) — Not Pareto optimal

<table>
<thead>
<tr>
<th></th>
<th>H₂</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁</td>
<td>2</td>
<td>2</td>
<td>0, 1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
In the coordination game, there is NO dominant strategy.

This is also known as a coordination game because it requires coordination to achieve the Pareto optimal equilibrium.
Start up Game:

Start up \rightarrow \begin{align*}
\text{Work (W)} & \quad \text{Quit (Q)} \\
\end{align*}

Coordination Game:

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>Q</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>2, 2</td>
<td>0, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>1, 0</td>
<td>1, 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$2 \text{ NE } (W, W), (Q, Q)$
Investment Game:

N players

large number

invest \{ 0, 10 \}

if invest payoff \geq 5 \text{ if } 90\% \text{ or more invest}

-10 \text{ if less than 90\% invest}

if invest 0, or NOT invest

payoff = 0.
2 Nash Equilibria of the investment game.
- Everyone invests
- No one invests

\[N = 100 \]

Every one invests. No incentive to switch, since switching reduces payoff from 5 to 0.
No one invests
— If no one is investing, best response is NOT to invest.

Similar to coordination game, since 2 NE
— All invest — Pareto optimal
— None Invest