Expected revenue of the first price auction:

Nash equilibrium

\[b_1 = \frac{1}{2} v_1 \]
\[b_2 = \frac{1}{2} v_2 \]

Since the player with the maximum bid wins the auction and pays an amount equal to the bid, revenue: \(\max \{ b_1, b_2 \} \).
\[\text{revenue} = \max \left\{ \frac{1}{2} b_1, \frac{1}{2} b_2 \right\} \]
\[= \max \left\{ \frac{1}{2} v_1, \frac{1}{2} v_2 \right\} \]
\[= \frac{1}{2} \max \left\{ v_1, v_2 \right\} \]

\[V_1, V_2 \text{ are independent valuations uniformly distributed in } [0,1]. \]

\[\begin{array}{c}
0 & 1 \\
\hline
v & v + dv \\
\hline
0 & 1 \\
\end{array} \]
What is the probability that \(\max\{V_1, V_2\} \) lies in the infinitesimal interval \([V, V + dv] \)?

Scenario 1: \(V_1 \) is the maximum

- \(V_1 \) lies in \([V, V + dv] \)
- \(V_2 \) lies in \([0, V] \).

\[
Pr = Pr(V_1 \in [V, V + dv]) \times Pr(V_2 \in [0, V]) \\
= dv \times V = V dv
\]
Scenario 2: V_2 is maximum

V_2 lies in $[v, v + dv]$

V_1 lies in $[0, v]$

$$P_r = Pr(V_1 \in [0, v])$$

$$\times Pr(V_2 \in [v, v + dv])$$

$$= v \times dv = v dv$$

Probability that $\max\{V_1, V_2\}$

lies in $[V, V + dv]$

$$= V dv + v dv$$

$$= 2v dv.$$
Average revenue corresponding to $\max\{v_1, v_2\} \in [v, v + dv]$

\[
= \frac{1}{2} v \times 2v \, dv \\
= v^2 \, dv
\]

Net average revenue to the auctioneer

\[
= \int_0^1 v^2 \, dv \\
= \left. \frac{v^3}{3} \right|_0^1 = \frac{1}{3}.
\]
The expected revenue of the auctioneer = $\frac{1}{3}$.

Sealed bid first-price auction.