`Mixed Strategies`
If both show same face, then P_1 wins. P_2 pays 1 Rs to P_1.

On the other hand, if both show a different face, then P_2 wins. P_1 has to pay 1 Rs to P_2.
<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>(\bar{P})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_i)</td>
<td>H</td>
<td>-1, 1</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>H</td>
<td>(1, -1)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>(-1, 1)</td>
</tr>
</tbody>
</table>

No intersection of best responses!

Pure strategies where each player is choosing one action.
Games in which players can randomly choose a particular action with a certain probability.

- Mixed Strategy
- Randomized Strategy
\[P \leq p \leq 1 \]

\[P = \frac{1}{4} \] — Player 1 is choosing H with probability \(\frac{1}{4} \) randomly with frequency 25\% he is choosing H.

\[\text{Probability of Tails} = 1 - \frac{1}{4} = \frac{3}{4} \]

on an average 75\% of the time he is choosing T.
<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(1-a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_2)</td>
<td>(p_1)</td>
<td>(H)</td>
</tr>
<tr>
<td>(H)</td>
<td>(1, -1)</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>(T)</td>
<td>(-1, 1)</td>
<td>(1, -1)</td>
</tr>
</tbody>
</table>

\[
U_2(H) = p \times (-1) + (1-p)(1) = 1 - 2p.
\]

\[
U_2(T) = p \times 1 + (1-p)(-1) = 2p - 1
\]
Therefore, \(P_2 \) would 'Mix' or 'Randomly' choose between \(H \) and \(T \) only if both payoffs are equal!

For a mixed strategy equilibrium,

\[
U_2(H) = U_2(T) \\
1 - 2p = 2p - 1
\]
\[1 - 2p = 2p - 1 \]
\[4p = 2 \]
\[p = \frac{1}{2} \]

\[0 \leq q \leq 1 \]

Player 2 chooses H with probability \(q \) \(/ \) chooses T with prob \(1 - q \)
\[U_i(H) = q \times 1 + (1-q)(-1) = 2q - 1 \]
\[U_i(T) = q \times (-1) + (1-q) \times 1 = 1 - 2q \]

\(P_i \) will 'mix' only when,
\[U_i(H) = U_i(T) \]
\[\Rightarrow 2q - 1 = 1 - 2q \]
\[2q - 1 = 1 - 2q\]
\[4q = 2\]
\[q = \frac{1}{2}\]

\[q = \frac{1}{2}, \quad 1-q = \frac{1}{2}\]

\(P_2\) is mixing \(HH, TT\) with prob. \(\frac{1}{2}, \frac{1}{2}\).
Similarly, \(p = \frac{1}{2} \rightarrow 1 - p = \frac{1}{2} \).

Therefore, \(P_i \) is mixing H, T with prob \(\frac{1}{2}, \frac{1}{2} \).

<table>
<thead>
<tr>
<th>Mixed Strategy NE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(\frac{1}{2}, \frac{1}{2} \right))</td>
</tr>
</tbody>
</table>

Mixed Strategy \(P_1 \)

Mixed Strategy \(P_2 \)