Stackelberg Model

Dr. Vimal Kumar, Assistant Professor of Economics
Indian Institute of Technology Kanpur, vimalk@gmail.com
Market Structure and Oligopoly

• Markets differ along following criterion
 ◦ number of firms
 ◦ barrier of entry and exit
 ◦ ability of firms to differentiate their products

• Oligopoly
 ◦ small number of firms in a market with relatively high barriers to entry

• because relatively few firms compete in an oligopoly,
 ◦ each firm faces a downward-sloping demand curve
 ◦ each firm can set its price: $p > MC$
 ◦ each affects rival firms
Duopoly as a Special Case of Oligopoly

• Basic Duopoly Model
 ◦ Only 2 firms (no other firms can enter)
 ◦ firms sell identical products
 ◦ market that lasts only 1 period (product or service cannot be stored and sold later)

• Two Types
 ◦ firms choose quantities: Cournot model, Stackelberg model
 ◦ firms set prices: Bertrand model
Stackelberg model

• **Cournot model**: both firms make their output decisions simultaneously

• **Stackelberg's model**: firms act sequentially
 ◦ A firm sets its output first [Leader]
 ◦ then its rival sets its output [Follower]
 ◦ Once the two quantities are chosen, price is set to clear the market. For example, take \(P = a - b(q_L + q_F) \)
How do we solve this game?

• Work backwards -- use backward induction
• Start at the last step: \(P = a - b(q_L + q_F) \), setting price to clear the market
• Next step before that -- follower chooses quantity to maximize profit given leader’s choice.
 • \(\pi_F = (a - b(q_L + q_F) - c) \cdot q_F \)
 • Take derivative and set = 0 to get BR
 • \(a - bq_L - 2bq_F - c = 0 \)
 • \(q_F^* = \frac{(a - bq_L - c)}{2b} \)
Now go the first step -- leader chooses quantity to maximize profit

\[\pi_L = (a - b(q_L + q_F) - c) q_L \]

However, leader knows how follower will respond -- leader can figure out follower’s BR, so:

\[\pi_L = (a - b(q_L + (a - bq_L - c)/2b) - c) q_L \]

Simplify to get \[\pi_L = (a - bq_L - c)/2 q_L \]

Take derivative and set equal to 0 to get BR:

\[(a - 2bq_L - c)/2 = 0 \to q_L = (a - c)/2b \]

And \[q_F^* = (a - bq_L - c)/2b = (a - b(a - c)/2b - c)/2b = (a - c)/4b \]
• Leader has the advantage -- he sets higher quantity and gets a higher profit than the follower

• Often called the “first-mover” advantage

• Total output = (a-c)/2b + (a-c)/4b = 3(a-c)/4b

• Greater than total Cournot output of 2(a-c)/3b
Depicting the Stackelberg outcome

quantities in a Stackelberg equilibrium