Switched Mode Power Conversion

Primitive Converters

Interconnection
of
Switches & Energy Storage Elements
Switched Mode Power Conversion

Primitive Converters

Interconnection of Switches & Energy Storage Elements

\[T_1 \quad T_2 \quad L \quad C \]
Switched Mode Power Conversion

Primitive Converters

Interconnection

of

Switches & Energy Storage Elements
to

Source and Load

\[V_G \]
\[I_G \]

\[T_1 \]
\[T_2 \]

\[P \]

\[L \]

\[C \]

\[R \]
Switched Mode Power Conversion

Primitive Converters

Interconnection Rules

Sources may not be Overloaded
Voltage Sources are not to be Shorted
Current Sources are not to be Opened

Conservation of Energy
Inductor Currents are not to be Interrupted
Capacitor Voltages are not to be Shorted
Switched Mode Power Conversion

Primitive Converters

Interconnection Rules

Voltage sources may not be connected across PT₁ or PT₂

No Short Circuit of Voltage Sources

Capacitors may not be connected across PT₁ or PT₂

No Disruption of Energy on the Capacitor
Switched Mode Power Conversion

Primitive Converters

Interconnection Rules

Current sources may not be connected in series with T_1 or T_2

No Open Circuit of Current Sources

Inductor may not be connected in series with T_1 or T_2

No Disruption of Energy on the Inductor
Switched Mode Power Conversion

Primitive Converters

Acceptable Switch-Storage Cells

Two possible switch+storage cells
These are dual of each other
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

Input average quantities: V_G and I_G
Output average quantities: I_O and V_O
Switched Mode Power Conversion

Primitive Converters

Strategy of Operation & Control

Constant Switching Period

$T_1 P$ ON Time T_{ON} ; $T_2 P$ OFF Time T_{OFF}

$T_{ON} + T_{OFF} = T_S$
Switched Mode Power Conversion

Primitive Converters

Primitive Current to Voltage Converter

Input average quantities: I_G and V_G

Output average quantities: V_O and I_O
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

Ideal Performance Measures
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

First Performance Measure
Forward Voltage Conversion Ratio

\[
\frac{V_O}{V_G} = ?
\]
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

Performance Measures

Forward Voltage Conversion Ratio

Reverse Current Conversion Ratio
Switched Mode Power Conversion
Primitive Converters

Forward Voltage Conversion Ratio

Average voltage across inductor in one cycle is zero
Switched Mode Power Conversion

Primitive Converters

Forward Voltage Conversion Ratio

\[(V_G - V_O)T_{ON} - V_O(T_S - T_{ON}) = 0\]

\[\frac{V_O}{V_G} = \frac{T_{ON}}{T_S} = D\]
Switched Mode Power Conversion

Primitive Converters

Reverse Current Transfer Ratio

\[
\frac{I_G}{I_O} = ?
\]

Reverse Current Conversion Ratio
Switched Mode Power Conversion

Primitive Converters

Reverse Current Transfer Ratio

\[I_O T_{ON} - I_G T_S = 0 \]

\[\frac{I_G}{I_O} \frac{T_{ON}}{T_S} = D \]
Switched Mode Power Conversion

Primitive Converters

Efficiency of Ideal Converter is Unity

\[
\frac{I_G}{I_O} = ? \quad \text{and} \quad \frac{V_O}{V_G} = ?
\]
Switched Mode Power Conversion
Primitive Converters

Primitive Voltage to Current Converter

Non-Ideality in the Converter Current I_O
Switched Mode Power Conversion

Primitive Converters

Ripple Current in the Inductor

\[\Delta I_O = \frac{V_O}{L}(T_S - T_{ON}) = \frac{V_O}{L}(1 - D)T_S \]
Switched Mode Power Conversion

Primitive Converters

Normalised Ripple Current

\[
\frac{\Delta I_O}{I_O} = \frac{V_O}{I_O L} (1 - D) T_S = \frac{(1 - D) T_S}{L/R}
\]
Switched Mode Power Conversion

Primitive Converters

Condition for Ripple Current to be Low

\[
\frac{\Delta I_o}{I_o} = \frac{(1-D)T_s}{(L/R)} \leq 1
\]

\[
T_s \geq \frac{L}{R}
\]

Switching Period << Circuit Time Constant
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

Non-Ideality in the Switches – Conduction Drop
Switched Mode Power Conversion

Primitive Converters

Switches are Realised by Real Devices

\[V_{G} \quad T_{1} \quad P \quad V_{P} \quad T_{2} \quad L \quad V_{O} \]

\[T_{1P} \text{ Drop is } V_{T}; \quad T_{2P} \text{ Drop is } V_{D} \]
Switched Mode Power Conversion

Primitive Converters

T_{1P} Drop is V_T; T_{2P} Drop is V_D

Inductor ON State Voltage is $V_G - V_T - V_O$

Inductor OFF State Voltage is $-V_D - V_O$
Switched Mode Power Conversion

Primitive Converters

Volt-Sec Balance on the Inductor

\[
(V_G - V_T - V_O)T_{ON} - (V_D + V_O)(T_S - T_{ON}) = 0
\]
Switched Mode Power Conversion

Primitive Converters

Forward Voltage Transfer Ratio

\[(V_G - V_T)T_{ON} - V_D T_{OFF} = V_O T_S \]

\[V_O = D V_G \left(1 - \frac{V_T}{V_G} - \frac{(1-D) V_D}{D V_G} \right) \]
Switched Mode Power Conversion
Primitive Converters
Reverse Current Transfer Ratio

\[I_O T_{ON} - I_G T_S = 0 \]

\[\frac{I_G}{I_O} = \frac{T_{ON}}{T_S} = D \]
Switched Mode Power Conversion

Primitive Converters

Switch Non-ideality is Series Non-ideality

\[
\frac{I_G}{I_O} = \frac{T_{ON}}{T_S} = D
\]

Switch Non-idealities have no Effect on Current Ratio
Switched Mode Power Conversion

Primitive Converters

Efficiency

\[I_G = \frac{T_{ON}}{T_S} = D \]

\[\frac{V_O}{V_G} = D \left(1 - \frac{V_T}{V_G} - \frac{(1-D)V_D}{DV_G} \right) \]

\[\eta = \frac{V_O I_O}{V_G I_G} = \left(1 - \frac{V_T}{V_G} - \frac{(1-D)V_D}{DV_G} \right) \]
Switched Mode Power Conversion

Primitive Converters

Primitive Voltage to Current Converter

Non-Ideality in the Source & Inductor
Switched Mode Power Conversion

Primitive Converters

Source & Inductor Have Internal Resistances

Source Resistance is R_S
Inductor Resistance is R_L
Switched Mode Power Conversion
Primitive Converters

Volt-Sec Balance on the Inductor

\[
\left(V_G - I_O (R_S + R_1) - V_O \right) T_{ON} - \left(I_O R_1 + V_O \right) (T_S - T_{ON}) = 0
\]
Switched Mode Power Conversion

Primitive Converters

Forward Voltage Transfer Ratio

\[
\frac{V_O}{V_G} = D \left(\frac{R}{R + DR_S + R_1} \right)
\]

\[
\frac{V_O}{V_G} = D \left(\frac{1}{1 + \frac{DR_S + R_1}{R}} \right)
\]

\[
(V_G - I_O (R_S + R_1) - V_O) T_{ON} - (I_O R_1 + V_O)(T_S - T_{ON}) = 0
\]
Switched Mode Power Conversion

Primitive Converters

Reverse Current Transfer Ratio

\[I_O T_{ON} - I_G T_S = 0 \]

\[\frac{I_G}{I_O} = \frac{T_{ON}}{T_S} = D \]
Switched Mode Power Conversion
Primitive Converters

Efficiency

\[
\frac{I_G}{I_O} = \frac{T_{ON}}{T_S} = D
\]

\[
\frac{V_O}{V_G} = D \left(\frac{R}{R + DR_S + R_1} \right)
\]

\[
\eta = \frac{V_O I_O}{V_G I_G} = \left(\frac{1}{1 + \frac{DR_S + R_1}{R}} \right)
\]
Switched Mode Power Conversion

Primitive Converters

Efficiency with Switch/Source/Inductor Drops

\[\eta = \frac{V_O I_O}{V_G I_G} = \left(\frac{1 - \frac{V_T}{V_G} - \frac{(1-D)V_D}{D V_G}}{1 + \frac{D R_s}{R} + \frac{R_i}{R}} \right) \]
Switched Mode Power Conversion
Primitive Converters

Guidelines for Good Efficiency

\[\eta = \frac{V_O I_O}{V_G I_G} = \left(1 \frac{V_T}{V_G} - (1-D)\frac{V_D}{V_D} \right) \frac{DV_G}{1+\frac{DR_S}{R}+\frac{R_1}{R}} \]

\[V_T \square V_G ; V_D \square V_O \]

\[R_S \square R ; R_1 \square R \]
Switched Mode Power Conversion

Primitive Converters

Non-ideality Related to Output Voltage

Output Voltage Ripple is a Function of the Load
Switched Mode Power Conversion

Primitive Converters

Evaluation of the Output Voltage Ripple

Capacitor Supported Load is Common
Switched Mode Power Conversion

Primitive Converters

Inductor Current & Output Voltage Ripple

Output Voltage Ripple is ΔV_O
Switched Mode Power Conversion

Primitive Converters

Inductor Current & Output Voltage Ripple

\[\Delta I_o = \frac{V_o}{L} (1 - D) T_s \]

Charge causing voltage ripple
Switched Mode Power Conversion
Primitive Converters

Inductor Current & Output Voltage Ripple

Charge causing voltage ripple

\[\Delta I_o = \frac{V_o}{L} (1 - D) T_S \]

\[\Delta V_o = \frac{\Delta I_o}{2} \frac{1}{T_S} \frac{1}{2} \frac{1}{C} \]
Switched Mode Power Conversion
Primitive Converters

Inductor Current & Output Voltage Ripple

\[\Delta I_o = \frac{V_o}{L} (1 - D) T_s \]

\[\Delta V_o = \frac{V_o (1 - D) T_s}{2L} \left(\frac{1}{2} \frac{T_s}{2} \frac{1}{C} \right) = \frac{V_o (1 - D) T_s^2}{8LC} \]

\[\frac{\Delta V_o}{V_o} = \frac{(1 - D) T_s^2}{8LC} \]
Switched Mode Power Conversion

Primitive Converters

Guidelines for Low Output Ripple

\[\frac{\Delta V_o}{V_o} = \frac{(1 - D)T_s^2}{8LC} \]

Switching Period \(<<\) Natural Frequency

\[T_s \ll \frac{1}{\sqrt{LC}} \]
Switched Mode Power Conversion

Primitive Converters

Summary of Steady State Performance

Voltage Gain V_O/V_G

Current Gain I_O/I_G

Current Ripple $\Delta I_O/I_O$

Voltage Ripple $\Delta V_O/V_O$

Switch Non-ideality

Source Non-ideality

Storage Non-ideality

Efficiency
Switched Mode Power Conversion

Primitive Converters

Summary of Steady State Performance

Inductor Volt-sec Balance: V_o/V_G

Current Averaging: I_o/I_G

Inductor Volt-sec in Sub-period: $\Delta I_o/I_o$

Capacitor Charge in Sub-period: $\Delta V_o/V_o$

Inductor Volt-sec Balance with Non-ideality: η
Switched Mode Power Conversion
Transistor Amplifiers

Transistor Amplifier Variants
Switched Mode Power Conversion

Primitive Converters

Buck, Boost & Buck-Boost Variants
Switched Mode Power Conversion

Primitive Converters

Buck, Boost & Buck-Boost Variants