Switched Mode Power Conversion

Capacitors

Devices for Efficient Power Conversion

Switches
Inductors
Transformers
Capacitors
Switched Mode Power Conversion

Capacitors

Capacitors Store Energy
Capacitors Store Energy in an Electric Field
Switched Mode Power Conversion

Capacitors

Capacitors are also used as Switch-Protection Elements

In Switching Aid Networks Capacitors Provide Turn-Off dv/dt Protection
Switched Mode Power Conversion

Capacitors

Electrical Circuit Element Equation

\[V, C, I \text{ are Electrical Circuit Quantities} \]

\[I = C \frac{dV}{dt}; \quad V(t) = V_t + \frac{1}{C} \int_{0}^{t} I \, dt \]
Switched Mode Power Conversion

Capacitors

\[\frac{V}{C} \]

\[V(t) = V_I + \frac{1}{C} \int_0^t I dt = V_I + \frac{Q}{C} \]

Capacitor Accumulates Charge to Store Energy
Switched Mode Power Conversion

Capacitors – Charge Balance in AC

\[
\begin{align*}
V & \quad \text{C} \quad \text{I} \\
\text{V(t)} & = \text{V(t + T)} \\
\frac{1}{C} \int_{t}^{t+T} \text{Idt} & = 0 ; \int_{t}^{t+T} \text{Idt} = 0
\end{align*}
\]

In Periodic AC Application Net Charge Accumulation Per Cycle is Zero
Switched Mode Power Conversion

Capacitors

\[V(t) = V(t + T) \]

Capacitor Current is Proportional to \(\frac{dV}{dt} \)
Switched Mode Power Conversion

Capacitors

\[V(t) = V(t + T) \]

Charge Balance
Switched Mode Power Conversion

Inductor – Flux Balance

\[V \]
\[\begin{array}{c} \mathbb{L} \\ \downarrow \end{array} \]
\[I \]

\[I(t) = I(t + T) \]

\[\frac{1}{L} \int_{t}^{t+T} V \, dt = 0 ; \quad \int_{t}^{t+T} V \, dt = 0 \]

In Periodic AC Application Net Flux Accumulation Per Cycle is Zero Volt-Sec Balance in an Inductor
Switched Mode Power Conversion

Capacitors

\[V(t) = V_i + \frac{1}{C} \int_0^t I \, dt = V_i + \frac{Q}{C} \]

Capacitor Accumulates Charge to Store Energy
Switched Mode Power Conversion

Capacitors

\[E = \frac{1}{2} C V^2 \]

Stored Energy Relationship
Switched Mode Power Conversion

Capacitors

\[E = \frac{1}{2} CV^2 \]

Capacitors are
Selected from Manufacturer’s Catalogue
Switched Mode Power Conversion

Capacitors – Construction

\[D = \varepsilon E \]

Electric Flux Density: \((D)\)

Dielectric Permittivity: \((\varepsilon)\)

Electric Field Intensity: \((E)\)
Switched Mode Power Conversion

Capacitors – Value

Capacitance is Defined as Charge (Q) per Volt (V)

\[
\frac{Q}{A} = \varepsilon \frac{V}{d} \quad \frac{Q}{V} = C = \varepsilon \frac{A}{d}
\]
Switched Mode Power Conversion

Capacitors – Stored Energy

Energy is Work Done to Separate the Charge Through a Potential of V

\[E = \int_{0}^{V} Q \, dV = \int_{0}^{V} CV \, dV = \frac{1}{2} CV^2 \]
Switched Mode Power Conversion

Capacitors – Energy Density

\[E = \frac{1}{2} CV^2 = \frac{1}{2} \varepsilon A \frac{E^2 d^2}{d} = 0.5 \varepsilon E^2 \text{ (Volume)} \]

Energy Density is \(0.5 \varepsilon E^2\) Joule/m\(^3\)
Switched Mode Power Conversion

Capacitors – Energy Density in Air

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \varepsilon A E^2 d^2 = 0.5 \varepsilon E^2 \text{ (Volume)}
\]

\[
\varepsilon = 8.854 \times 10^{-12} \text{ F/m}
\]

\[
E = 3 \times 10^6 \text{ V/m}
\]

Energy Density = 39.84 J/m\(^3\)
Switched Mode Power Conversion

Capacitors – Energy Density in Polyester

\[E = \frac{1}{2} CV^2 = \frac{1}{2} \varepsilon A E^2 d^2 = 0.5 \varepsilon E^2 \text{ (Volume)} \]

\[\varepsilon = 4 \times 8.854 \times 10^{-12} \text{ F/m} \]

\[E = 275 \times 10^6 \text{ V/m} \]

Energy Density = 1.34 MJ/m³
Switched Mode Power Conversion

Capacitors – Energy Density (Bipolar)

\[E = \frac{1}{2} CV^2 \]

Energy = 65 J
Volume: 0.07 m³
Energy Density: 0.94 kJ/m³
Switched Mode Power Conversion

Capacitors – Energy Density (Electrolytic)

Terminal

Dielectric Material

Terminal

\[E = \frac{1}{2} CV^2 \]

Electrolytic

Energy = 243 J
Volume: 0.04 m³
Energy Density: 6.1 kJ/m³
Switched Mode Power Conversion

Capacitors – Packaging

Dielectric

Terminal 1

Terminal 2

Dielectric

MKV

Electrolytic

Cylindrical Geometry
Switched Mode Power Conversion

Types of Capacitors

Ultra-Capacitors
Electrolytic – Unipolar Capacitors
Metallised Dielectric – Bipolar Capacitors
Switched Mode Power Conversion

Capacitors - Specification

Voltage Rating – Volt

Capacitance Value – Farad
Switched Mode Power Conversion

Capacitors – Life

Electrolytic

Standard Life: 105 °C, 8000 hrs
Switched Mode Power Conversion

Capacitors – Nonidealities

Electrolytic

MKV

Equivalent Series Resistance: ESR

Equivalent Series Inductance: ESL

Leakage Current: I_{lk}
Switched Mode Power Conversion

Capacitors – Nonidealities

Equivalent Series Resistance: ESR

\[P = I^2 R_{ESR} \]
Switched Mode Power Conversion

Capacitors – Thermal Design

\[\theta_{\text{rise}} = P R_{\text{th}} \]

Thermal Resistance: \(R_{\text{th}} \ ^\circ \text{C/W} \)

[Capacitor]
Switched Mode Power Conversion

Capacitors – Nonidealities

\[\omega_0 = \frac{1}{2\pi \sqrt{CL_{ESL}}} \]

Equivalent Series Inductance: ESL

Capacitor
Switched Mode Power Conversion

Capacitors – Nonidealities

Leakage Current: I_{lk}

Shunt Loss: $V_C I_{lk}$
Switched Mode Power Conversion

Capacitors – Some Calculations

\[\text{C} = 100 \, \mu\text{F} \]
Switched Mode Power Conversion

Capacitors – Current Calculations

\[V = 800 \text{ V} \]
\[I = 80 \text{ A} \]

\[C = 100 \, \mu\text{F} \]
Switched Mode Power Conversion

Capacitors

\[V(t) = 800 \text{ V} \]

\[I(t) = -80 \text{ A} \]

\[C = 100 \mu\text{F} \]
Switched Mode Power Conversion

Capacitors – Voltage Calculations

\[C = 100 \, \mu F \]
Switched Mode Power Conversion

Capacitors – Voltage Calculations

\[\Delta V = \frac{1}{C} \int_{0}^{1.25 \text{ms}} 80 \cos(\omega t) \, dt; \quad \omega = 2\pi \times 200 \text{ rad/sec} \]

\[C = 100 \, \mu\text{F} \]
Switched Mode Power Conversion
Capacitors – Voltage Calculations

\[
\Delta V = \frac{80}{100 \mu \cdot 400\pi} \left[\sin(\omega t) \right]_0^{\pi/2} = 637 \text{ V}
\]

\[C = 100 \ \mu\text{F}\]
Switched Mode Power Conversion
Capacitors – Current & Voltage Calculations

\[V = 800 \text{ V} \quad \text{and} \quad \Delta V = 637 \text{ V} \]

\[I = 80 \text{ A} \quad \text{and} \quad -80 \text{ A} \]

\[C = 100 \ \mu\text{F} \]
Switched Mode Power Conversion

Capacitors – Dissipation Calculations

\[I_{\text{rms}} = \left[\frac{80^2}{0.125} \right] + \left[\frac{80^2}{0.125} \right] + \left[\frac{80^2}{0.5} \times 0.31 \right] = 80^2 \times 0.41 \]

\[P = 80^2 \times 0.41 \times 1.4 \text{m} = 3.67 \text{W} \]

MKV

\[C = 100 \, \mu \text{F} \; ; \; R_S = 1.4 \, \text{m} \Omega \]
Switched Mode Power Conversion

Measurement of C

\[V \]
\[\frac{dV}{dt} \]
\[\frac{dI}{dt} \]

$I = C \frac{dV}{dt}$

Pulsed Current and Voltage Rise
Switched Mode Power Conversion

Measurement of C with LCR Meter

\[
\vec{I} = \frac{\vec{V}}{j\omega L}
\]

\[
\left| \frac{V}{I} \right| = \frac{1}{\omega C}
\]

Sinusoidal Voltage and Current
Switched Mode Power Conversion

Impedance as a Function of ω

$$\vec{Z} = \frac{\vec{V}}{\vec{I}} = j \omega L$$

Impedance Plot [dBΩ vs log (ω)]
Switched Mode Power Conversion
Impedance with Non-idealities

\[R_{ESR} = 1.4 \text{ m}\Omega \]
\[L_{ESL} = 180 \text{ nH} \]
\[C = 100 \text{ \mu F} \]
\[\omega_O = 235.7 \text{ krad/sec} \]

MKV
Switched Mode Power Conversion

Impedance with Non-idealities

Impedance Plot $[\text{dB} \Omega \text{ vs } \log(\omega)]$
Switched Mode Power Conversion

Impedance with Non-idealities

Impedance Plot \([\text{dB}\Omega \text{ vs log } (\omega)]\)
Switched Mode Power Conversion

Capacitors - Safety

Charge Holding

Discharge Time Constant

> 10000 s : 3 Hours

MKV
Switched Mode Power Conversion

Capacitors – Series Operation

Electrolytic

Capacitors May be Operated in Series
To Obtain Higher Voltage Rating.
(specially for Electrolytic)

Bleeder Current is Chosen Higher than Leakage Current
Switched Mode Power Conversion
Capacitors – Parallel Operation

Capacitors May be Operated in Parallel
To Obtain Higher Ripple Current Rating

Physical Layout to Obtain Symmetry
Switched Mode Power Conversion

Capacitors

Devices for Efficient Power Conversion

Switches
Inductors
Transformers
Capacitors