Root locus Method

V_{ref}

V_{fb}

KG_cG_p

$1 + KG_cG_pH$

Closed loop poles.
\(1 + KG_cG_pH = 0 \Rightarrow \text{characteristic eqn.} \)

Roots \(\Rightarrow \) closed loop pole location.

\(\omega \) s-plane
\[1 + KG_c G_p H = 0 \]

\[KG_c G_p H = -1 \]

or

\[|KG_c G_p H| = 1 \]

\[\angle KG_c G_p H = \pi \]

\[(2n+1)\pi \]
\[\frac{KG}{1 + KG} \]

\[1 + KG = 0 \]

\[KG = -1 \]

\[K \cdot n_g(s) = -1 \]

\[d_g(s) \]

\[G \rightarrow \infty \]

\[\text{zeros of } G \]

\[G_c = 1 \]

\[H = 1 \]

\[\text{poles of } G \]
\[KG = \begin{pmatrix} -1 \end{pmatrix} \]

- at open loop pole points of \(G \) \(K=0 \)

\[KG = \begin{pmatrix} -1 \end{pmatrix} \]

- at open loop zero points of \(G \) \(K=\infty \)

As \(K \) is VARIED from 0 to \(\infty \) the root locus starts from open loop POLE \((K=0)\) and ends on open loop zero \((K=\infty)\).
DC - DC CONVERTER.

Gain structure

PWM

Plant

Gain

V_{\text{ref}}

-
$$G_C = \frac{S + a}{S}$$
OCTAVE

1. MODEL \(G_p\) = \(\frac{ng}{dg}\)

2. Control Structure \(G_c\) = \(\frac{ngc}{dq_c} = \frac{1}{S} = \frac{S+q}{S} = \frac{1+q}{S}\)

3. Define feedback transfer fn. \(\Rightarrow H = \frac{nh}{dh}\)
set Gc structure

A. $K \cdot G_c \cdot G_p \cdot H$

loop transfer fn.

\[
\begin{bmatrix}
K \\
dgc \\
ngc \\
ng \\
\frac{nh}{dh}
\end{bmatrix}
\]

5. plot root loci

6. Choose a closed loop pole point set

7. STEP RESPONSE TEST