Continuing..

PRINTED WIRING BOARD TECHNOLOGIES
1. Conductive Ag bumps are printed on a sheet of Cu foil.
2. Prepreg is pierced through by the bumps
3. Another sheet of Cu is also laminated and a two sided B²IT board is manufactured.

B²IT is a Toshiba Process Technology
Merits of B²IT

1. Simple Process
2. Wide Choices of Insulation
3. All Layers Stacked Via Random Via structure
4. Combination with other HDI (High Density Interconnection) Technologies
5. Various Types of Multi Layer structure

B²IT is a Toshiba Process Technology
Use of prepreg for stacking of layers
- Very useful for power plane design
- Power electronics boards-ideal
- Not a parallel process-drilling bottleneck
- Aspect ratio ideal between 2 and 4
- Established reliability of through-holes
- Registration of stack/holes requires more tolerance in design
- Registration errors costly- boards are discarded
- Add-up layers need to be symmetric around the core; equal weight distribution of copper foils during press.

Use of copper foils a must for stacking
- Repair and rework of inner layers difficult
- Minimum hole dia currently is 0.2mm or 0.15mm
- Prepreg thicknesses available in the order of 100-200um.
- Ideal procedure for thin core for SBU; necessary in any case for SBU layers; support for SBU layers.
- Test and QC : somewhat similar
- SBU process not suited for flex bases
MICROVIA/SBU PROCESSES

BENEFITS & DISADVANTAGES

• Parallel processing-high volume; yield; PWB process compatible; ideal for handheld products
• Photovia, laser and dry plasma etch
• Wet chemical etch not popular
• Ideal for redistribution layer in SCM/MCM
• Not suited for high power boards
• Aspect ratio less than 1 in most cases-thinner dielectric by curtain coating
• Adhesion strength between dielectric and Cu crucial for reliability of via
• Very ideal for BGA, FCA, COB methods since it enhances board density
• Board warping disturbs microvias; Tg to be high
• Choose dielectric and FR4 core suitably for DEC and other properties
• Blind vias easy to produce using laser drill- better accuracy in depth drilling
• Enables use of conductive paste for stacked vias resembling through-holes
MICROVIA/SBU PROCESSES

BENEFITS & DISADVANTAGES

- Flexibility in choosing number of SBU layers- top or bottom of core; to some extent; not core symmetric
- Use of additive plating on build-up layers with just enough copper
- Test core before SBU process; removal of SBU layers is tricky
- Use of different dielectrics restricted due to compatibility with laser drilling
- Quality of laser drill is high class
- Same hole cleaning procedures as conventional
- Different dielectrics can be used for different layers
- Increased wiring density; component density in SBU layers
- Dielectric material property is key to SBU and microvia layer reliability
- SBU eliminates TH’s and TH components
- Currently some TH components are not available in SMT format; so TH are essential
- Thermal vias in TH format well established

SBU-flexibility in process, material choices
Flex Circuits

Information courtesy of:

- Steve Gurley - Flexible Circuits
- Minco – Flexible circuit design guide
 http://www.pwcircuits.co.uk/flex.htm
- Dupont
- Sheldahl
- Rogers Corp.
Overview

• Originally designed as a replacement for traditional wire harnesses
• An array of conductors bonded to a thin dielectric film
• Bent-folded or shaped to interconnect multiple planes
• Assumes 3-Dimensional configuration
• Flex Circuits, Flexible Printed Circuit Boards, Flexible PCBs
Air bag systems, Engine controls, ABS

Cameras

Bar code equipment

Satellites

Avionics

Calculators

Printers

Infrared detector modules

Clinical analyzers

Integrated circuit testers

Military radio

Cardiac pacemakers
Drivers

- Point-to-Point wire replacement
- Package size and weight reduction
- Assembly error reduction
- Fast assembly
- Robust connections
- Flexibility during installation
- Improved Airflow
- Increased Heat Dissipation
Elements for Construction

- **Base material dielectric**
 - Organic
 - Resin + Filler

- **Adhesive**

- **Metal foil conductor**
 - Cu foils

- **Protective coatings**
 - Spray/liquid/film

Single sided flex circuit
Substrate

- **Properties**
 - Dimensional stability
 - Thermal resistance
 - Electrical insulation
 - Moisture absorption
 - Flexibility with temperature
 - Chemical resistance
 - Costs

- **Materials**
 - Cellulose-paper film composite
 - Nylon-paper composite
 - Mica composite
 - Rubber tapes
 - Polyimide
 - Polyester, PET, PEN
 - Aramid fiber
 - Fluorocarbon films
Choice of materials

- Polyimide
 - High temperature
 - Flame retardant

- Polyester
 - Low temperature
 - Low cost

- Aramid non-woven
 - Low cost
 - High temperature
 - Low tear strength

- Fluorocarbons
 - Space/ Military
Adhesives

- Provide good bond between substrate and metal foil
- Compatibility with substrate and conductor layer
- Applied under heat and/or pressure
- Properties
 - Peel strength
 - Moisture absorption
 - Electrical properties
 - Temperature resistance
 - Vulnerability to solvents
 - Adhesive swelling/expansion
 - Cross-linking reduces flexibility
Choice of material

• Acrylic Adhesives
 – Multiple soldering applications

• Polyimides and Epoxies
 – Long duration exposure to temperature

• Polyester
 – Low cost
 – Lower temperature applications
Adhesiveless Laminates

• Thinner circuit
• Better flexibility
• Better thermal conductivity
• Better stress performance (mechanical/thermal)
• Manufacturing
 ➢ Vapor Deposition – Vaporized Cu in vacuum chamber
 ➢ Sputtering to film – Cu cathode bombarded with ‘+’ ve ions
 ➢ Plated to film
Conductors

- **Copper**
 - **Electrodeposited** 10-40% elongation
 - Plating and stripping from a cylindrical cathode
 - Columnar grain structure
 - Static applications
 - **Rolled / Annealed** Cu 25-45% elongation
 - Overlapping horizontal plane grain structure
 - Dynamic applications
- **Beryllium-Copper foil**
- **PTF**: Silver, Carbon in polymeric media like epoxy, acrylic, urethane or vinyl based polymers
Cover layer or Protective coating

- **Plating**
 - Solder, nickel, gold and tin

- **Non-conductive photo-imageable solder masks**

- **Non-conductive cover layers**
 - Liquid polymeric solutions spin coated and cured
 - Screen printing and cured by UV/ IR
 - Dry film type cover layers (peel stickers)
Constructions

- Single sided
- Double access flex
- Double sided flex (plated)
- Multilayer flex
- Rigid-flex
- FC on flex
- TAB flex
- SMD flex
Cross-section of a simple flex circuit

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Cover layer (Polyimide)</td>
<td>0.001”</td>
</tr>
<tr>
<td>Adhesive</td>
<td>0.001”</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0014” ± 0.002”</td>
</tr>
<tr>
<td>Adhesive</td>
<td>0.001”</td>
</tr>
<tr>
<td>Polyimide base</td>
<td>0.001”</td>
</tr>
</tbody>
</table>
Single sided flex circuit

Double access flex circuit
Double sided flex construction
Multi-layer flex

Four Layer Flex Circuit

- Plated through-holes
Rigid flex

- Coverlay on flex
- Liquid photo-imagable solder-resist on rigid areas
• Typical stiffener material is polyimide and FR-4.
• These stiffeners can be installed to the top or bottom side of the flexible circuit.
• These provide specific areas of rigidity.
• FR-4 stiffeners are usually installed with pressure sensitive adhesive (PSA).
• Polyimide stiffeners are usual installed with an acrylic adhesive, known as a thermal set adhesive (TSA).
Single metal layer, double sided access, stiffener

Double metal layer with stiffener
Rigid Vs Flex

• Rigid is essentially single plane medium whereas flex can be configured in multiple.
• Flex have 20-30% lower dielectric constant than rigid.
• Thinner construction and better isolation is possible.
• Thinness of flex provides assembly strain relief on component joints as compared with rigid.
• Flex prone to degradation on long thermal exposure.
• Polyimide used in flex circuits absorbs more moisture
Recommended Bend Radii

Flex Circuit Type
- Single Metal Layer
- Double Sided Flex
- Multilayer Flex
- Dynamic Application (Only single sided recommended)

Minimum Bend Radius
- 3-6 x circuit thickness
- 6-10 x circuit thickness
- 10-15 x circuit thickness (or more)
- 20-40 x circuit thickness (increases in bend radius normally increases life)

Figure Credits: Shereen Lim, Avago Technologies and electronicsonline
END OF CHAPTER ON PWB TECHNOLOGIES

TUTORIAL SESSION TO FOLLOW
1. Some SMD capacitors have a case form of 01005. What are the dimensions of this capacitor?

 01005 .011 inches x .005 inches

2. A HDI substrate has a 1-4-3 construction. What does 1-4-3 mean?

 1 - Core
 4 - Top 4 BU
 3 - Bottom 3 BU layers

3. Name three etchants commonly used in the PWB industry.
 a.
 b.
 c.

4. a. The black colored area in an Ag-halide photo tool blocks UV light. True or False?

 b. YAG laser cannot drill copper but can drill through a dielectric. True or False?

5. FR-4 is a standard laminate material used in PCBs. What does ‘FR’ stand for? Name the key ingredient/element for the unique property.

6. What do the following terms stand for?
 a. $B^2IT >>$
 b. $ALIVH >>$
7. a. A positive photo resist when exposed to UV light becomes harder and insoluble in developer.
 True or False? _______________________

 b. Ni-SS metal foils are normally used to make stencils for solder paste printing.
 True or False? _______________________

8. Mention two points favoring aqueous developing as compared to organic developing for photo resists.
 a. _______________________
 b. _______________________

9. A PWB features 0.2mm mechanically drilled holes (smallest) in a 1.6mm substrate. What is the aspect ratio of the PWB? Do you foresee any difficulty with this design during fabrication or not? What is your suggestion for ideal AR?
 \[
 \frac{1.6 \text{ mm}}{0.2 \text{ mm}} = 8
 \]

10. Name two etch resists for TH boards.
 a. _______________________
 b. _______________________

11. What is the purpose of ‘flying probe test’ in finished PCBs?

12. There is a need to coat a liquid dielectric on a copper plate to about 25 microns. Which coating method or methods would you employ? Which gives more yields?

13. Platinum is used as the catalyst for electroless process in TH-PCBs?
 True or False? _______________________

Centre for Electronics Design and Technology, Indian Institute of Science, Bangalore 560012
14. Copper needs to be protected from atmospheric oxidation after PCB fabrication. *Other than Sn-Pb what other surface protection* can you provide? Indicate thickness.

15. Why is HSS drill bit not used in high-speed drilling of copper-clad laminates-glass/epoxy based? What is your choice?

16. Itemize *three electrical properties* you would look for in a copper-clad laminate.
 a.
 b.
 c.

17. Give two reasons to *minimize undercut or maintain high etch factor* during etching.
 a.
 b.

18. What is a B-stage resin?

19. What are the *standard thicknesses of copper-clad laminates* available in the market?

20. Name *two possible defects* expected in microvias of a HDI-PWB.
 a.
 b.
21. Name one advantage of 'mitring' tracks in your design, from a manufacturing standpoint.

22. Name two organic resins for PCB substrate materials under the organic substrate category: (other than epoxy)
 a) ______________________________
 b) ______________________________

23. Mention two MERITS of a Diazo photo tool compared to a silver halide photo tool.
 a. ______________________________
 b. ______________________________