Lecture #3B: Problem solving session-I
Problem # 1: Consider a linear block code, C with parity check matrix given by

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

What is \((n, k)\) of C?

\[Solutions: \] Rank of \(H\) matrix is 3. So, \(n = 7, k = 7 - 3 = 4\).
Problem # 2: Consider the following binary block code, C,

$$C = \{000000, 110011, 011101, 111111\}$$

Is C a linear block code? Justify your answer.

Solutions: No.
Linear block code

- **Problem # 2:** Consider the following binary block code, C,

\[C = \{000000, 110011, 011101, 111111\} \]

Is C a linear block code? Justify your answer.

- **Solutions:** No.
- Sum of two codewords for a linear block code is a valid codeword.

Let \(v_0 = 000000, v_1 = 110011, v_2 = 011101, \) and \(v_3 = 111111, \) then \(v_1 + v_2, v_1 + v_3, v_2 + v_3, \) and \(v_1 + v_2 + v_3 \) must also be a valid codeword.

\[
\begin{align*}
 v_1 + v_2 &= 101110 \\
 v_1 + v_3 &= 001100 \\
 v_2 + v_3 &= 100010 \\
 v_1 + v_2 + v_3 &= 010001
\end{align*}
\]
Problem # 2 (contd.)

Thus a linear block code should have the following codewords

\[C = \{000000, 110011, 011101, 111111, 101110, 001100, 100010, 010001\} \]

This is a (6,3) linear binary code.
Problem # 2 (contd.)

- Thus a linear block code should have the following codewords

\[C = \{000000, 110011, 011101, 111111, 101110, 001100, 100010, 010001\} \]

- This is a (6,3) linear binary code.

- One example of generator matrix for this code

\[
G = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Problem # 2 (contd.): Generator matrix in systematic form

- How to write the generator matrix in systematic form?

\[
G = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Problem # 2 (contd.): Generator matrix in systematic form

- How to write the generator matrix in systematic form?

\[
G = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

- Row 3 → Row 3 + Row 1

\[
G = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

- Row 2 → Row 3 + Row 2

\[
G = \begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Adrish Banerjee
Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh India

An introduction to coding theory
Problem # 2 (contd.): Generator matrix in systematic form

- Row 1 → Row 1 + Row 2

\[
G = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Similarly parity check matrix in systematic form can be written as

\[
H = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Problem # 3: Let H be the parity check matrix of an (n,k) linear code C that has both odd and even-weight codewords. Construct a new linear code C_1 with the following parity-check matrix

$$H_1 = \begin{bmatrix}
0 & 0 & \cdots & H \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
1 & 1 & \cdots & 1
\end{bmatrix}$$

Show that C_1 is an $(n+1, k)$ linear code.
Problem # 3: Let H be the parity check matrix of an (n,k) linear code C that has both odd and even-weight codewords. Construct a new linear code C_1 with the following parity-check matrix

$$H_1 = \begin{bmatrix} 0 & | & H \\ 0 & | & 0 \\ \vdots & | & \vdots \\ 0 & | & \cdots \\ 1 & | & 1 \cdots 1 \end{bmatrix}$$

1. Show that C_1 is an $(n+1,k)$ linear code.
2. Show that every codeword of C_1 has even weight.
3. Show that C_1 can be obtained from C by adding an extra parity check digit, denoted by v_∞ to the left of each codeword v as follows
Problem #3: Let H be the parity check matrix of an (n,k) linear code C that has both odd and even-weight codewords. Construct a new linear code C_1 with the following parity-check matrix

$$H_1 = \begin{bmatrix} 0 & & & & H \\ \vdots & 0 & & & \vdots \\ 0 & & \ddots & & \vdots \\ \vdots & 0 & & \ddots & \vdots \\ 1 & 1 & \cdots & 1 & \end{bmatrix}$$

Show that C_1 is an $(n+1,k)$ linear code.

Show that every codeword of C_1 has even weight.

Show that C_1 can be obtained from C by adding an extra parity check digit, denoted by v_∞ to the left of each codeword v as follows

1. if v has odd weight, then $v_\infty = 1$, and
2. if v has even weight, then $v_\infty = 0$
The matrix H_1 is an $(n - k + 1) \times (n + 1)$ matrix.

First we note that the $n - k$ rows of H are linearly independent. It is clear that the first $(n - k)$ rows of H_1 are also linearly independent.
Problem # 3 (contd.)

The matrix H_1 is an $(n - k + 1) \times (n + 1)$ matrix.

First we note that the $n - k$ rows of H are linearly independent. It is clear that the first $(n - k)$ rows of H_1 are also linearly independent.

The last row of H_1 has a “1” at its first position but other rows of H_1 have a “0” at their first position. Any linear combination including the last row of H_1 will never yield a zero vector.

Thus all the rows of H_1 are linearly independent. Hence the row space of H_1 has dimension $n-k+1$.
Problem # 3 (contd.)

- The matrix H_1 is an $(n - k + 1) \times (n + 1)$ matrix.
- First we note that the $n - k$ rows of H are linearly independent. It is clear that the first $(n - k)$ rows of H_1 are also linearly independent.
- The last row of H_1 has a “1” at its first position but other rows of H_1 have a “0” at their first position. Any linear combination including the last row of H_1 will never yield a zero vector.
- Thus all the rows of H_1 are linearly independent. Hence the row space of H_1 has dimension $n-k+1$.
- The dimension of its null space, C_1, is then equal to

$$\dim(C_1) = (n + 1) - (n - k + 1) = k$$

Hence C_1 is an $(n + 1, k)$ linear code.
Problem # 3 (contd.)

Show that every codeword of C_1 has even weight.

Solution: The last row of H_1 is an all-one vector.
Show that every codeword of C_1 has even weight.

Solution: The last row of H_1 is an all-one vector.

The inner product of a vector with odd weight and the all-one vector is “1”. Hence, for any odd weight vector v,

$$vH_1^T \neq 0$$

and v cannot be a code word in C_1.

Therefore, C_1 consists of only even-weight code words.
Problem # 3 (contd.)

Show that C_1 can be obtained from C by adding an extra parity check digit, denoted by v_∞ to the left of each codeword v as follows

1) if v has odd weight, then $v_\infty = 1$, and
Show that C_1 can be obtained from C by adding an extra parity check digit, denoted by v_∞ to the left of each codeword v as follows

1) if v has odd weight, then $v_\infty = 1$, and
2) if v has even weight, then $v_\infty = 0$.

Solution: Let v be a code word in C. Then $vH^T = 0$. Extend v by adding a digit v_∞ to its left.
Problem # 3 (contd.)

Show that \(C_1 \) can be obtained from \(C \) by adding an extra parity check digit, denoted by \(v_∞ \) to the left of each codeword \(v \) as follows

1) if \(v \) has odd weight, then \(v_∞ = 1 \), and
2) if \(v \) has even weight, then \(v_∞ = 0 \)

Solution: Let \(v \) be a code word in \(C \). Then \(vH^T = 0 \). Extend \(v \) by adding a digit \(v_∞ \) to its left.

This results in a vector of \(n+1 \) digits,

\[v_1 = (v_∞, v) = (v_∞, v_0, v_1, \cdots, v_{n-1}) \]

For \(v_1 \) to be a vector in \(C_1 \), we must require that

\[v_1H_1^T = 0 \]
Problem # 3 (contd.)

- Note that the inner product of v_1 with any of the first $n-k$ rows of H_1 is 0.

- The inner product of v_1 with the last row of H_1 is
 \[v_\infty + v_0 + v_1 + \cdots + v_{n-1} \]
Note that the inner product of v_1 with any of the first $n-k$ rows of H_1 is 0.

The inner product of v_1 with the last row of H_1 is

$$v_\infty + v_0 + v_1 + \cdots + v_{n-1}$$

For this sum to be zero, we must require that $v_\infty = 1$ if the vector v has odd weight and $v_\infty = 0$ if the vector v has even weight.

Therefore, any vector v_1 formed as above is a codeword in C_1, there are 2^k such codewords.
Note that the inner product of v_1 with any of the first $n-k$ rows of H_1 is 0.

The inner product of v_1 with the last row of H_1 is

$$v_\infty + v_0 + v_1 + \cdots + v_{n-1}$$

For this sum to be zero, we must require that $v_\infty = 1$ if the vector v has odd weight and $v_\infty = 0$ if the vector v has even weight.

Therefore, any vector v_1 formed as above is a codeword in C_1, there are 2^k such codewords.

The dimension of C_1 is k, these 2^k codewords are all the code words of C_1.

Adrish Banerjee
Department of Electrical Engineering Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India

An introduction to coding theory