Lecture #3A: Syndrome, error correction and error detection
Outline of the lecture

- Syndrome and error detection

- Syndrome and error correction
Syndrome and error detection

Let $v = (v_0, v_1, \cdots, v_{n-1})$ be a codeword from a binary (n,k) linear block code with generator matrix G and parity check matrix H.

Assume v is transmitted over a BSC, then binary received sequence,

$$r = (r_0, r_1, \cdots, r_{n-1}) = v + e \pmod{2}$$

$$= (v_0, v_1, \cdots, v_{n-1}) + (e_0, e_1, \cdots, e_{n-1})$$

$$= (v_0 + e_0, v_1 + e_1, \cdots, v_{n-1} + e_{n-1})$$

where the binary vector $e = (e_0, e_1, \cdots, e_{n-1})$ is the error pattern.
Syndrome and error detection

- Let $v = (v_0, v_1, \cdots, v_{n-1})$ be a codeword from a binary (n,k) linear block code with generator matrix G and parity check matrix H.
- Assume v is transmitted over a BSC, then binary received sequence,

$$r = (r_0, r_1, \cdots, r_{n-1}) = v + e \pmod{2}$$

$$= (v_0, v_1, \cdots, v_{n-1}) + (e_0, e_1, \cdots, e_{n-1})$$

$$= (v_0 + e_0, v_1 + e_1, \cdots, v_{n-1} + e_{n-1}),$$

where the binary vector $e = (e_0, e_1, \cdots, e_{n-1})$ is the error pattern.
- The “1’s” in e represent transmission errors, i.e.,

$$e_i = \begin{cases}
1 & \text{if } r_i \neq v_i \\
0 & \text{if } r_i = v_i,
\end{cases}$$

and $e_i = 1$ indicates that the i^{th} position in r has an error.

- After receiving r, the decoder must determine if r contains errors (error detection), and locate the errors in r (error correction).
Syndrome and error detection

- After receiving \mathbf{r}, the decoder must determine if \mathbf{r} contains errors (error detection), and locate the errors in \mathbf{r} (error correction).
- *Error detection* is achieved by computing the $(n-k)$ tuple
 \[
 \mathbf{s} = (s_0, s_1, \cdots, s_{n-k-1}) = \mathbf{r}^T \quad (\text{syndrome})
 \]

r is a codeword if and only if $\mathbf{s} = \mathbf{r}^T = \mathbf{0}$.
After receiving \(r \), the decoder must determine if \(r \) contains errors (error detection), and locate the errors in \(r \) (error correction).

Error detection is achieved by computing the \((n-k)\) tuple

\[
\mathbf{s} = (s_0, s_1, \cdots, s_{n-k-1}) = r^T \mathbf{H} \quad \text{(syndrome)}
\]

\(r \) is a codeword if and only if \(\mathbf{s} = r^T \mathbf{H} = 0 \).

If \(\mathbf{s} \neq 0 \), \(r \) is not a codeword and transmission errors have been detected.

If \(\mathbf{s} = 0 \), \(r \) is a codeword and no errors are detected. If \(r \) is a codeword other than the actual transmitted codeword, then an *undetected error* occurs. This happens whenever the error pattern \(\mathbf{e} \) is a non-zero codeword.
The syndrome s computed from the received vector r actually depends only on the error pattern e, and not on the transmitted code word v.

$$s = r \cdot H^T = (v + e)H^T = v \cdot H^T + e \cdot H^T$$

Since $v \cdot H^T = 0$,

$$s = e \cdot H^T$$
Syndrome and error detection

Example 2.4: Consider a \((7, 4)\) linear code with parity-check matrix

\[
H = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Let \(r = (0 1 0 0 0 0 1)\). The syndrome of \(r\) is

\[
s = (s_0, s_1, s_2) = r \cdot H^T = (0 1 0 0 0 0 1) \cdot \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
\end{bmatrix} = (1 1 1) \neq 0
\]

Syndrome and error correction

- The syndrome \(s\) computed from the received vector \(r\) actually depends only on the error pattern \(e\), and not on the transmitted code word \(v\).

\[
s = r \cdot H^T = (v + e)H^T = e \cdot H^T \quad \text{(since } vH^T = 0)\]
The syndrome s computed from the received vector r actually depends only on the error pattern e, and not on the transmitted code word v.

$$s = r \cdot H^T = (v + e)H^T = e \cdot H^T \quad \text{(since } vH^T = 0)$$

For error pattern $e = \{e_0, e_1, \cdots, e_{n-1}\}$, and H given by

$$H = [I_{n-k} : P]$$

$$= \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & p_0,0 & p_1,0 & \cdots & p_{k-1},0 \\
0 & 1 & 0 & \cdots & 0 & p_0,1 & p_1,1 & \cdots & p_{k-1},1 \\
0 & 0 & 1 & \cdots & 0 & p_0,2 & p_1,2 & \cdots & p_{k-1},2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & p_0,n-k-1 & p_1,n-k-1 & \cdots & p_{k-1,n-k-1}
\end{bmatrix}$$

the syndrome equations can be rewritten as

$$s_j = e_j + e_{n-k}p_{0j} + e_{n-k+1}p_{1j} + \cdots + e_{n-1}p_{k-1,j}, \quad 0 \leq j \leq n - k$$

This is a set of $n - k$ equations in n unknowns, $e_0, e_1, \cdots, e_{n-1}$.
Syndrome and error correction

- This is a set of $n - k$ equations in n unknowns, $e_0, e_1, \ldots, e_{n-1}$.
- The decoder must solve of these equations for the estimated error pattern, \hat{e}. Estimated codeword is

$$\hat{v} = r + \hat{e}$$

- There are 2^k possible solutions to the syndrome equations and only one solution represents the true error pattern.
Syndrome and error correction

This is a set of $n - k$ equations in n unknowns, $e_0, e_1, \cdots, e_{n-1}$.

The decoder must solve of these equations for the estimated error pattern, \hat{e}. Estimated codeword is

$$\hat{v} = r + \hat{e}$$

There are 2^k possible solutions to the syndrome equations and only one solution represents the true error pattern.

To minimize the probability of a decoding error, the \textit{the most probable} error pattern that satisfies the above equations is chosen as the true error vector.

Recall for BSC, the maximum likelihood decoder choose \hat{v} as the codeword \hat{v} that minimizes Hamming weight of the error pattern e.
Example 3.1: Let

\[
H = \begin{bmatrix}
 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

Suppose \(v = (1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1) \) is transmitted and \(r = (1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1) \) is received. Then the syndrome of \(r \) is

\[
s = (s_0, s_1, s_2) = r.H^T = (1 \ 1 \ 1)
\]

Let \(e = (e_0, e_1, e_2, e_3, e_4, e_5, e_6) \) be the error pattern.

Since

\[
s = e.H^T
\]

we have the following 3 equations:

\[
\begin{align*}
1 & = e_0 + e_3 + e_5 + e_6 \\
1 & = e_1 + e_3 + e_4 + e_5 \\
1 & = e_2 + e_4 + e_5 + e_6
\end{align*}
\]
The solutions are:

\[
\begin{align*}
(0000010) & \quad (1010011) \\
(1101010) & \quad (0111011) \\
(0110110) & \quad (1100111) \\
(1011110) & \quad (0001111) \\
(1110000) & \quad (0100001) \\
(0011000) & \quad (1001001) \\
(1000100) & \quad (0010101) \\
(0101100) & \quad (1111101)
\end{align*}
\]

Note that the true error pattern,

\[e = r + v = (1001001) + (1001011) = (0000010)\]

is one of the 16 possible solutions. It is also the most probable solution.