Lecture #12: Performance Bounds for Convolutional Codes
Introduction

- We will analyze the performance of maximum likelihood decoding for a convolutional code over binary symmetric channel.

Without loss of generality, we assume that the all zero codeword 0 is transmitted from a $(3, 1, 2)$ nonsystematic feedforward encoder with

$$G(D) = [1 + D \quad 1 + D^2 \quad 1 + D + D^2]$$
We will analyze the performance of maximum likelihood decoding for a convolutional code over binary symmetric channel.

Without loss of generality, we assume that the all zero codeword 0 is transmitted from a (3, 1, 2) nonsystematic feedforward encoder with

\[G(D) = [1 + D \ 1 + D^2 \ 1 + D + D^2] \]

The Input Output Weight Enumerating Function (IOWEF) of this encoder is given by

\[A(W, X, L) = \frac{X^7 WL^3}{1 - XWL(1 + X^2 L)} \]

\[= X^7 WL^3 + X^8 W^2 L^4 + X^9 W^3 L^5 + X^{10}(W^2 L^5 + W^4 L^6 + \cdots) \]

A first event error happens at an arbitrary time t if the all zero path is eliminated for the first time in favor of an incorrect path.
First Error Event

- The incorrect path must have diverged from all zero state at some time and has now remerged at time t for the first time.

So, it must be one of the path enumerated by the codeword weight enumerating function.
First Error Event

- The incorrect path must have diverged from all zero state at some time and has now remerged at time t for the first time.
- So, it must be one of the path enumerated by the codeword weight enumerating function.
- Assuming that the incorrect path has weight d, a first event error happens with probability

$$P_d = \begin{cases} \sum_{e=\frac{d+1}{2}}^{d} \binom{d}{e} p^e (1-p)^{d-e} & \text{odd} \\ \frac{1}{2} \binom{d}{d/2} p^{d/2} (1-p)^{d/2} + \sum_{e=\frac{d}{2}+1}^{d} \binom{d}{e} p^e (1-p)^{d-e} & \text{even} \end{cases}$$

Convolutional codes

- All incorrect paths of length t branches or less can cause a first event error at time t.
Convolutional codes

- All incorrect paths of length \(t \) branches or less can cause a first event error at time \(t \).
- Thus the first event error probability at time \(t \) can be bounded using union bound by the sum of the error probabilities of each of these paths.

If all incorrect paths of length greater than \(t \) are also included, then the first event error probability at any time \(t \) can be bounded by

\[
P_f(E) < \sum_{d=d_{\text{free}}}^{\infty} A_d P_d
\]

where \(A_d \) is the number of codewords of weight \(d \).
First Error Event

- For odd \(d \), we can write

\[
P_d = \sum_{e=\frac{d+1}{2}}^{d} \binom{d}{e} p^e (1 - p)^{d-e}
\]

\[
< \sum_{e=\frac{d+1}{2}}^{d} \binom{d}{e} p^{d/2} (1 - p)^{d/2}
\]

\[
= p^{d/2} (1 - p)^{d/2} \sum_{e=\frac{d+1}{2}}^{d} \binom{d}{e} p^e (1 - p)^{d/2 - e}
\]

\[
< p^{d/2} (1 - p)^{d/2} \sum_{e=0}^{d} \binom{d}{e} = 2^d p^{d/2} (1 - p)^{d/2}
\]

- Similarly, for even \(d \), we have

\[
P_d = \frac{1}{2} \binom{d}{d/2} p^{d/2} (1 - p)^{d/2} + \sum_{e=(d/2)+1}^{d} \binom{d}{e} p^e (1 - p)^{d-e}
\]

\[
< \sum_{e=(d/2)}^{d} \binom{d}{e} p^e (1 - p)^{d-e}
\]

\[
< \sum_{e=(d/2)}^{d} \binom{d}{e} p^{d/2} (1 - p)^{d/2}
\]

\[
= p^{d/2} (1 - p)^{d/2} \sum_{e=(d/2)}^{d} \binom{d}{e}
\]

\[
< p^{d/2} (1 - p)^{d/2} \sum_{e=0}^{d} \binom{d}{e} = 2^d p^{d/2} (1 - p)^{d/2}
\]
Hence,

$$P_f(E) < \sum_{d=\text{free}}^{\infty} A_d[2\sqrt{p(1-p)}]^d$$

$$= A(X)|_{X=2\sqrt{p(1-p)}}$$

We have event error probability at time t upper bounded by first event error probability, hence

$$P(E) < A(X)|_{X=2\sqrt{p(1-p)}}$$
Event error probability

- Hence,

\[P_f(E) < \sum_{d=d_{\text{free}}}^{\infty} A_d [2 \sqrt{p(1-p)}]^d \]

\[= A(X) \bigg|_{X=2 \sqrt{p(1-p)}} \]

- We have event error probability at time \(t \) upper bounded by first event error probability, hence

\[P(E) < A(X) \bigg|_{X=2 \sqrt{p(1-p)}} \]

- For small \(p \), the bound is dominated by the first time, thus event error probability can be approximated as

\[P(E) \approx A_{d_{\text{free}}} [2 \sqrt{p(1-p)}]^{d_{\text{free}}} \]

Bit error probability

- The bit error probability can be bounded by

\[P_b(E) < \sum_{d=d_{\text{free}}}^{\infty} B_d P_d \]

where \(B_d \) is the total number of nonzero information bits on all weight-\(d \) paths, divided by the number of information bits \(k \) per unit time.
The bit error probability can be bounded by

$$P_b(E) < \sum_{d=d_{\text{free}}}^{\infty} B_d P_d$$

where B_d is the total number of nonzero information bits on all weight-d paths, divided by the number of information bits k per unit time.

Then we can write

$$P_b(E) < \sum_{d=d_{\text{free}}}^{\infty} B_d [2\sqrt{p(1-p)}]^d = B(X)|_{X=2\sqrt{p(1-p)}}$$

Multiple error events

Multiple error events
Different error events configuration
Example: Computation of Event error probability

For the (3, 1, 2) encoder calculate the event error probability for crossover probability of \(p = 10^{-2} \) for binary symmetric channel.
Example: Computation of Event error probability

- For the (3, 1, 2) encoder calculate the event error probability for crossover probability of $p = 10^{-2}$ for binary symmetric channel.
- $d_{\text{free}} = 7$ and $A_{d_{\text{free}}} = 1$, then we have

$$P(E) \approx 2^7 p^{7/2} = 1.28 \times 10^{-5}$$

Example: Computation of bit error probability

- Calculate the bit error probability for the same encoder for $p = 10^{-2}$.
Example: Computation of bit error probability

- Calculate the bit error probability for the same encoder for $p = 10^{-2}$.
- The bit weight enumerating function is given by

$$B(X) = \frac{(1/k) \partial A(W, X)}{\partial W} \bigg|_{W=1}$$

$$= \frac{\partial [X^7W/(1 - XW - X^3W)]}{\partial W} \bigg|_{W=1} X^7$$

$$= \frac{X^7}{(1 - 2X + X^2 - 2X^3 + 2X^4 + X^6)}$$

$d_{\text{free}} = 7$ and $B_{d_{\text{free}}} = 1$, then we have

$$P(E) \approx 2^7 p^{7/2} = 1.28 \times 10^{-5}$$