Lecture #10: Decoding of convolutional codes-I: Viterbi algorithm
Convolutional codes

Outline of the lecture:
- Viterbi decoding of \((n, 1, m)\) code.
- Example: Viterbi decoding of \((2, 1, 2)\) convolutional code on BSC.
A convolutional code can be represented by its trellis diagram.

Usually, the initial state of a convolutional code is a all-zero state.
A convolutional code can be represented by its trellis diagram.

Usually, the initial state of a convolutional code is a all-zero state.

For time, $l \leq m$, as information bits are shifted into the encoder, the number of states are doubled.

At time $l = m$, the number of states reaches 2^m.
Viterbi decoding of \((n, 1, m)\) code

- A convolutional code can be represented by its trellis diagram.
- Usually, the initial state of a convolutional code is a all-zero state.
- For time, \(l \leq m\), as information bits are shifted into the encoder, the number of states are doubled.
- At time \(l = m\), the number of states reaches \(2^m\).
- Since one information bit enters the encoder at each time instant, there are two branches leaving each state in the trellis diagram.

Viterbi decoding of \((n, 1, m)\) code

- A convolutional code can be represented by its trellis diagram.
- Usually, the initial state of a convolutional code is a all-zero state.
- For time, \(l \leq m\), as information bits are shifted into the encoder, the number of states are doubled.
- At time \(l = m\), the number of states reaches \(2^m\).
- Since one information bit enters the encoder at each time instant, there are two branches leaving each state in the trellis diagram.
- For time, \(l > m\), there are also two branches merging into each state.
Viterbi decoding of \((n, 1, m)\) code

- A convolutional code can be represented by its trellis diagram.
- Usually, the initial state of a convolutional code is an all-zero state.
- For time, \(l \leq m\), as information bits are shifted into the encoder, the number of states are doubled.
- At time \(l = m\), the number of states reaches \(2^m\).
- Since one information bit enters the encoder at each time instant, there are two branches leaving each state in the trellis diagram.
- For time, \(l > m\), there are also two branches merging into each state.
- The encoding of an information sequence is equivalent to tracing a path through a trellis.
Viterbi decoding of \((n, 1, m)\) code

- The encoder is returned to all zero sequence after an \(L\) bit information sequence,

\[
u = (u_0, u_1, u_2, \cdots, u_{L-1})
\]

During the termination process, the number of states are reduced by half until all trellis paths converge back to the all-zero state.
Viterbi decoding of \((n, 1, m)\) code

- The encoder is returned to all zero sequence after an \(L\) bit information sequence,
 \[
 \mathbf{u} = (u_0, u_1, u_2, \cdots, u_{L-1})
 \]
- During the termination process, the number of states are reduced by half until all trellis paths converge back to the all-zero state.
- For \(l \leq m\), there is exactly one path of length \(l\), entering each node at level(time) \(l\).
- For \(l > m\), there are exactly \(2^{l-m}\) paths of length \(l\), entering each node at level(time) \(l\).
Viterbi decoding of \((n, 1, m)\) code

- The encoder is returned to all zero sequence after an \(L\) bit information sequence,

\[u = (u_0, u_1, u_2, \cdots, u_{L-1}) \]

- During the termination process, the number of states are reduced by half until all trellis paths converge back to the all-zero state.
- For \(l \leq m\), there is exactly one path of length \(l\), entering each node at level(time) \(l\).
- For \(l > m\), there are exactly \(2^{l-m}\) paths of length \(l\), entering each node at level(time) \(l\).
- There are total \(2^l\) paths of length \(l\).

On BSC:
- Let the information sequence of length \(L\)

\[u = (u_0, u_1, \cdots, u_l, \cdots, u_{L-1}) \]

is encoded into code sequence of length \(N \overset{\Delta}{=} (L + m)n\)

\[v = (v_0, v_1, \cdots, v_l, \cdots, v_{L+m-1}) \]
Viterbi decoding of \((n, 1, m)\) code

On BSC:
- Let the information sequence of length \(L\)
 \[
 \mathbf{u} = (u_0, u_1, \cdots, u_L, \cdots, u_{L-1})
 \]
 is encoded into code sequence of length \(N \equiv (L + m)n\)
 \[
 \mathbf{v} = (v_0, v_1, \cdots, v_l, \cdots, v_{L+m-1})
 \]
- If the code sequence \(\mathbf{v}\) is transmitted over a channel, let the received sequence is,
 \[
 \mathbf{r} = (r_0, r_1, \cdots, r_L, \cdots, r_{L+m-1}),
 \]
 where the \(l^{th}\) received block is
 \[
 r_l = (r_1^{(1)}, r_1^{(2)}, \cdots, r_1^{(n)}).
 \]

A maximum likelihood decoder finds a path through the trellis that maximizes the path conditional probability

\[
P(\mathbf{r}|\mathbf{v}) = \prod_{l=0}^{L+m-1} P(\mathbf{r}_l|\mathbf{v}_l)
\]

where the branch conditional probability

\[
P(\mathbf{r}_l|\mathbf{v}_l) = \prod_{i=1}^{n} P(r_i^{(i)}|v_i^{(i)})
\]
Viterbi decoding of \((n, 1, m)\) code

On BSC:
- A maximum likelihood decoder finds a path through the trellis that maximizes the path conditional probability

\[
P(r|v) = \prod_{l=0}^{L+m-1} P(r_l|v_l)
\]

where the branch conditional probability

\[
P(r_l|v_l) = \prod_{l=1}^{n} P(r^{(i)}_l|v^{(i)}_l)
\]

- The bit conditional probabilities \(P(r^{(i)}_l|v^{(i)}_l)\) are the channel transition probabilities.

Maximizing \(P(r|v)\) is equivalent to maximizing

\[
M(r|v) \overset{\Delta}{=} \log P(r|v)
\]
Viterbi decoding of $(n, 1, m)$ code

Maximizing $P(r|v)$ is equivalent to maximizing

$$M(r|v) \triangleq \log P(r|v)$$

$M(r|v)$ is called the path metric.

$$M(r|v) = \sum_{l=0}^{L+m-1} \log P(r_l|v_l)$$

$$= \sum_{l=0}^{L+m-1} M(r_l|v_l), \quad \text{(branch metrics)}$$

$$M(r_l|v_l) = \sum_{i=1}^{n} \log P(r_l^{(i)}|v_l^{(i)})$$

$$= \sum_{i=1}^{n} M(r_l|v_l), \quad \text{(bit metrics)}$$

The partial path metric for the first j branches of a path v is given by

$$M([r|v]_j) = \sum_{l=0}^{j-1} M(r_l|v_l)$$
Viterbi decoding of \((n, 1, m)\) code

- The partial path metric for the first \(j\) branches of a path \(v\) is given by
 \[
 M([r|v]_j) = \sum_{l=0}^{j-1} M(r_l|v_l)
 \]

- For BSC, the maximum likelihood decoder decodes the received sequence \(r\) into code sequence \(v\) that minimizes the Hamming distance \(d(r, v)\)

The Viterbi algorithm is a computationally efficient method of finding the path through the trellis with the best metric.
Viterbi decoding of \((n, 1, m)\) code

- The Viterbi decoder proceeds through the trellis level by level in search of the path with the best metric.
- At each level, the decoder compares the metric of all partial paths entering each state.
Viterbi decoding of \((n, 1, m)\) code

- The Viterbi decoder proceeds through the trellis level by level in search of the path with the best metric.
- At each level, the decoder compares the metric of all partial paths entering each state.
- The decoder stores the partial path entering each state with the best metric (survivor path) and eliminates all other partial paths.

For \(m \leq l \leq L\), there are total \(2^m\) survivors.
Viterbi decoding of \((n, 1, m)\) code

- The Viterbi decoder proceeds through the trellis level by level in search of the path with the best metric.
- At each level, the decoder compares the metric of all partial paths entering each state.
- The decoder stores the partial path entering each state with the best metric (survivor path) and eliminates all other partial paths.
- For \(m \leq l \leq L\), there are total \(2^m\) survivors.
- The number of survivors decrease during the termination process, until at time \(l = L + m\) when there is only one survivor left.

Adrish Banerjee

Department of Electrical Engineering

Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh India

An introduction to coding theory
Viterbi decoding of \((n, 1, m)\) code

Viterbi Algorithm:

1. **Step 1:** Starting at level \(l = m\) in the trellis, compute the partial metric for the single path entering each \(m^{th}\) level state. Store the survivor path and its metric for each state.

2. **Step 2:** Increase time \(l\) by one. Compute the partial metric for all the paths entering at the \((l + 1)^{th}\) level state by adding the branch metric entering that state to the metric of the connecting survivor path at the previous \(l^{th}\) level state. Store the survivor path and its metric for each state.
Viterbi decoding of \((n, 1, m)\) code

Viterbi Algorithm:

1. **Step 1:** Starting at level \(l = m\) in the trellis, compute the partial metric for the single path entering each \(m^{th}\) level state. Store the survivor path and its metric for each state.
2. **Step 2:** Increase time \(l\) by one. Compute the partial metric for all the paths entering at the \((l+1)^{th}\) level state by adding the branch metric entering that state to the metric of the connecting survivor path at the previous \(l^{th}\) level state. Store the survivor path and its metric for each state.
3. **Step 3:** Repeat Step 2 until you are at the end of the trellis \((l = L + m)\).

Example:

This \((2, 1, 2)\) convolutional code with \(L = 5\) is used on a BSC. The received sequence is

\[r = (01, 11, 10, 10, 00, 11, 10) \]
Trellis diagram of \((2, 1, 2)\) convolutional code with \(L = 5\).
Viterbi Decoding

\[r = (01, 11) \]

\[\mathbf{v}_1 = (00, 00) \quad d(\mathbf{v}_1, r) = 3 \]

\[\mathbf{v}_2 = (00, 11) \quad d(\mathbf{v}_2, r) = 1 \]

\[\mathbf{v}_3 = (11, 01) \quad d(\mathbf{v}_3, r) = 2 \]

\[\mathbf{v}_4 = (11, 10) \quad d(\mathbf{v}_4, r) = 2 \]
Viterbi Decoding

\[r = (01, 11 10 10) \]

Level 4

Viterbi Decoding

\[r = (01, 11 10 10 00) \]

Level 5
Viterbi Decoding

Level 6

Level 7

r = (01, 11 10 10 00 11)

r = (01, 11 10 10 00 11 10)
Viterbi Decoding

$\hat{v} = (00, 11 10 10 00 01 11)$

Level 7

Adrish Banerjee
Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh, India

An introduction to coding theory