An introduction to coding theory

Adrish Banerjee

Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh
India

Jan. 30, 2017

Lecture #5C: Problem solving session-II
Problem # 1: Let C be a linear code with both even and odd weight codewords. Show that the number of even weight codewords is equal to the number of odd-weight codewords.

Solutions: Let C_e be the set of code words in C with even weight and let C_o be the set of code words in C with odd weight.
Problem # 1: Let C be a linear code with both even and odd weight codewords. Show that the number of even weight codewords is equal to the number of odd-weight codewords.

Solutions: Let \(C_e \) be the set of code words in C with even weight and let \(C_o \) be the set of code words in C with odd weight.

Let \(x \) be any odd-weight code vector from \(C_o \). Adding \(x \) to each vector in \(C_o \), we obtain a set of \(C_e' \) of even weight vector.

The number of vectors in \(C_e' \) is equal to the number of vectors in \(C_o \), i.e. \(|C_e'| = |C_o| \). Also \(|C_e'| \leq |C_e| \). Thus \(|C_o| \leq |C_e| \).
Problem # 1: Let C be a linear code with both even and odd weight codewords. Show that the number of even weight codewords is equal to the number of odd-weight codewords.

Solutions: Let C_e be the set of code words in C with even weight and let C_o be the set of code words in C with odd weight.

Let x be any odd-weight code vector from C_o. Adding x to each vector in C_o, we obtain a set of C_o' of even weight vector.

The number of vectors in C_o' is equal to the number of vectors in C_o, i.e. $|C_o'| = |C_o|$. Also $|C_o'| \leq |C_e|$. Thus $|C_o| \leq |C_e|$.

Now adding x to each vector in C_e, we obtain a set C_o' of odd weight code words.

The number of vectors in C_o' is equal to the number of vectors in C_e and $|C_o'| \leq |C_o|$. Hence $|C_e| \leq |C_o|$.
Linear block code

- **Problem # 1:** Let C be a linear code with both even and odd weight codewords. Show that the number of even weight codewords is equal to the number of odd-weight codewords.

 Solutions: Let C_e be the set of code words in C with even weight and let C_o be the set of code words in C with odd weight.

 - Let x be any odd-weight code vector from C_o. Adding x to each vector in C_o, we obtain a set of C'_e of even weight vector.
 - The number of vectors in C'_e is equal to the number of vectors in C_o, i.e. $|C'_e| = |C_o|$. Also $|C'_e| \leq |C_e|$. Thus $|C_o| \leq |C_e|$.
 - Now adding x to each vector in C_e, we obtain a set C'_o of odd weight code words.
 - The number of vectors in C'_o is equal to the number of vectors in C_e and $|C'_o| \leq |C_o|$. Hence $|C_e| \leq |C_o|$.
 - Both these conditions are true only when $|C_e| = |C_o|$.

Adrish Banerjee
Department of Electrical Engineering
Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India

An introduction to coding theory

Linear block code

- **Problem # 2:** Consider an (n, k) linear code C whose generator matrix G contains no zero column. Arrange all the codewords of C as rows of a 2^k by n array.
Problem # 2: Consider an \((n, k)\) linear code \(C\) whose generator matrix \(G\) contains no zero column. Arrange all the codewords of \(C\) as rows of a \(2^k\) by \(n\) array.

a) Show that no column of the array contains only zeros.

Solution: From the given condition on \(G\), we see that, for any digit position, there is a row in \(G\) with a nonzero component at that position.
Problem # 2: Consider an \((n, k)\) linear code \(C\) whose generator matrix \(G\) contains no zero column. Arrange all the codewords of \(C\) as rows of a \(2^k \times n\) array

a) Show that no column of the array contains only zeros.

Solution: From the given condition on \(G\), we see that, for any digit position, there is a row in \(G\) with a nonzero component at that position.

This row is a code word in \(C\). Hence in the code array, each column contains at least one nonzero entry.

Therefore no column in the code array contains only zeros.
Problem 2 (contd.): Consider an \((n, k)\) linear code \(C\) whose generator matrix \(G\) contains no zero column. Arrange all the codewords of \(C\) as rows of a \(2^k\) by \(n\) array.

b) Show that each column of the array consists of \(2^{k-1}\) zeros and \(2^{k-1}\) ones.
Problem 2 (contd.): Consider an \((n, k)\) linear code \(C\) whose generator matrix \(G\) contains no zero column. Arrange all the codewords of \(C\) as rows of a \(2^k\) by \(n\) array.

b) Show that each column of the array consists of \(2^{k-1}\) zeros and \(2^{k-1}\) ones.

Solution: To prove that each column of this array has \(2^{k-1}\) zeros and \(2^{k-1}\) ones, we will show that the number of codewords that “1” at the \(l\)-th position is same as number of codewords that have “0” at the \(l\)-th position.

In the code array, each column contains at least one nonzero entry. Consider the \(l\)-th column of the code array.
Problem 2 (contd.): Consider an \((n, k)\) linear code \(C\) whose generator matrix \(G\) contains no zero column. Arrange all the codewords of \(C\) as rows of a \(2^k\) by \(n\) array.

b) Show that each column of the array consists of \(2^{k-1}\) zeros and \(2^{k-1}\) ones.

Solution: To prove that each column of this array has \(2^{k-1}\) zeros and \(2^{k-1}\) ones, we will show that the number of codewords that “1” at the \(l\)-th position is same as number of codewords that have “0” at the \(l\)-th position.

In the code array, each column contains at least one nonzero entry. Consider the \(l\)-th column of the code array.

Let \(S_0\) be the codewords with a “0” at the \(l\)-th position and \(S_1\) be the codewords with a “1” at the \(l\)-th position.

Let \(x\) be a codeword from \(S_1\). Adding \(x\) to each vector in \(S_0\), we obtain a set \(S'_1\) of codewords with a “1” at the \(l\)-th position.

\[|S'_1| = |S_0| \quad \text{and} \quad S'_1 \subseteq S_1\]
Problem 2 (contd.): The above condition implies that

$$|S_0| \leq |S_1|$$

(1)

Adding \mathbf{x} to each vector in S_1, we obtain a set S'_0 of codewords with a “0” at the l–th position.

$$|S'_0| = |S_1| \quad \text{and} \quad S'_0 \subseteq S_0$$
Problem 2 (contd.): The above condition implies that

\[|S_0| \leq |S_1| \] \hspace{1cm} (1)

Adding \(\mathbf{x} \) to each vector in \(S_1 \), we obtain a set \(S'_0 \) of codewords with a “0” at the \(l \)-th position.

\[|S'_0| = |S_1| \quad \text{and} \quad S'_0 \subseteq S_0 \]

The above condition implies that

\[|S_1| \leq |S_0| \] \hspace{1cm} (2)

From (1) and (2), we get \(|S_0| = |S_1| \). Therefore \(l \)-th column contains \(2^{k-1} \) zeros and \(2^{k-1} \) ones.
c) **Problem 2 (contd.):** Show that the minimum distance d_{min} of C satisfies the following inequality

$$d_{\text{min}} \leq \frac{n \cdot 2^{k-1}}{2^k - 1}$$

Solution: The total number of ones in the array is $n \cdot 2^{k-1}$. Each nonzero codeword has weight at least d_{min}. Hence,

$$(2^k - 1) \cdot d_{\text{min}} \leq n \cdot 2^{k-1}$$
c) **Problem 2 (contd.):** Show that the minimum distance d_{min} of C satisfies the following inequality

$$d_{\text{min}} \leq \frac{n \cdot 2^{k-1}}{2^k - 1}$$

Solution: The total number of ones in the array is $n \cdot 2^{k-1}$. Each nonzero codeword has weight at least d_{min}. Hence,

$$(2^k - 1) \cdot d_{\text{min}} \leq n \cdot 2^{k-1}$$

This implies that

$$d_{\text{min}} \leq \frac{n \cdot 2^{k-1}}{2^k - 1}$$

Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear block code C so that it can simultaneously correct ν errors and e erasures. Prove your result.
Minimum distance of a code

Problem # 3 What should be the minimum distance of a linear block code C so that it can simultaneously correct ν errors and e erasures. Prove your result.

Solution: The minimum distance d_{min} should be

$$d_{\text{min}} \geq 2\nu + e + 1$$

Delete from all the codewords the e components where the receiver has declared erasures.
Problem # 3 What should be the minimum distance of a linear block code C so that it can simultaneously correct ν errors and e erasures. Prove your result.

Solution: The minimum distance d_{min} should be

$$d_{\text{min}} \geq 2\nu + e + 1$$

Delete from all the codewords the e components where the receiver has declared erasures.

This deletion results in a shortened code of length $n - e$.

The minimum distance of this shortened code should be at least

$$d_{\text{min}} - e \geq 2\nu + 1.$$
Problem # 3 What should be the minimum distance of a linear block code C so that it can simultaneously correct ν errors and e erasures. Prove your result.

Solution: The minimum distance d_{min} should be

$$d_{\text{min}} \geq 2\nu + e + 1$$

Delete from all the codewords the e components where the receiver has declared erasures.

This deletion results in a shortened code of length $n - e$.

The minimum distance of this shortened code should be atleast

$$d_{\text{min}} - e \geq 2\nu + 1.$$

Hence, the ν errors in the unerased positions can be corrected. As a result the shortened code with e components erased can be recovered.
Problem # 4 Prove that a linear code is capable of correcting λ or fewer errors and simultaneously detecting $l (l > \lambda)$ or fewer errors if its minimum distance $d_{\text{min}} \geq \lambda + l + 1$.

Solutions: From the given condition, we see that $\lambda < \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor$.
Problem # 4 Prove that a linear code is capable of correcting \(\lambda \) or fewer errors and simultaneously detecting \(l(l > \lambda) \) or fewer errors if its minimum distance \(d_{\text{min}} \geq \lambda + l + 1 \).

Solutions: From the given condition, we see that \(\lambda < \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor \).

It means that all the error patterns of \(\lambda \) or fewer errors can be used as coset leaders in a standard array. Hence, they are correctable.

In order to show that any error pattern of \(l \) or fewer errors is detectable, we need to show that no error pattern \(x \) of \(l \) or fewer errors can be in the same coset as an error pattern \(y \) of \(\lambda \) or fewer errors.
Problem # 4 Prove that a linear code is capable of correcting \(\lambda \) or fewer errors and simultaneously detecting \(l(l > \lambda) \) or fewer errors if its minimum distance \(d_{\text{min}} \geq \lambda + l + 1 \).

Solutions: From the given condition, we see that \(\lambda < \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor \).

It means that all the error patterns of \(\lambda \) or fewer errors can be used as coset leaders in a standard array. Hence, they are correctable.

In order to show that any error pattern of \(l \) or fewer errors is detectable, we need to show that no error pattern \(x \) of \(l \) or fewer errors can be in the same coset as an error pattern \(y \) of \(\lambda \) or fewer errors.

Suppose that \(x \) and \(y \) are in the same coset. Then \(x + y \) is a nonzero code word. The weight of this code word satisfies

\[
wt(x + y) \leq wt(x) + wt(y) \leq l + \lambda \leq d_{\text{min}}
\]

This is impossible since the minimum weight of the code is \(d_{\text{min}} \). Hence \(x \) and \(y \) are in different cosets. As a result, when \(x \) occurs, it will not be mistaken as \(y \). Therefore \(x \) is detectable.
Problem # 5 Let C_i be the binary (n, k_i) linear code with generator matrix G_i and minimum distance d_i, respectively. Let C be the binary $(2n, k_1 + k_2)$ linear code with generator matrix

$$G = \begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}$$

where 0 is a $k_2 \times n$ zero matrix. Calculate the minimum distance of C. Prove your result.

Solution: Let $u = (u_0, u_1, \ldots, u_{n-1})$ and $v = (v_0, v_1, \ldots, v_{n-1})$ be two binary n-tuples. We form $2n$-tuple from u and v as follows

$$|u|u + v| = (u_0, u_1, \ldots, u_{n-1}, u_0 + v_0, u_1 + v_1, \ldots, u_{n-1} + v_{n-1})$$
Problem # 5 Let C_i be the binary (n, k_i) linear code with generator matrix G_i and minimum distance d_i, respectively. Let C be the binary $(2n, k_1 + k_2)$ linear code with generator matrix

$$G = \begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}$$

where 0 is a $k_2 \times n$ zero matrix. Calculate the minimum distance of C. Prove your result.

Solution: Let $u = (u_0, u_1, \cdots, u_{n-1})$ and $v = (v_0, v_1, \cdots, v_{n-1})$ be two binary n-tuples. We form $2n$-tuple from u and v as follows

$$|u|u + v| = (u_0, u_1, \cdots, u_{n-1}, u_0 + v_0, u_1 + v_1, \cdots, u_{n-1} + v_{n-1})$$

The linear block code C is

$$C = |C_1|C_1 + C_2|$$

$$= \{ |u|u + v| : u \in C_1, \text{ and } v \in C_2 \}$$

Problem #5 (contd.): The minimum distance of C is

$$d_{\text{min}} = \min\{2d_1, d_2\}$$
Minimum distance of a code

- **Problem #5 (contd.):** The minimum distance of C is
 \[d_{\text{min}} = \min\{2d_1, d_2\} \]

- Let $x = |u|u + v|$ and $y = |u'|u' + v'|$ be two distinct codewords in C.
 \[d(x, y) = w(u + u') + w(u + u' + v + v') \]
 where $w(z)$ is the Hamming weight of z.

Consider two cases $v = v'$ and $v \neq v'$. If $v = v'$, since $x \neq y$, we must have $u \neq u'$. In this case
\[d(x, y) = w(u + u') + w(u + u') \]
Minimum distance of a code

- **Problem #5 (contd.):** The minimum distance of C is
 \[d_{\text{min}} = \min\{2d_1, d_2\} \]

- Let $x = |u|u + v|$ and $y = |u'|u' + v'|$ be two distinct codewords in C.
 \[d(x, y) = w(u + u') + w(u + u' + v + v') \]
 where $w(z)$ is the Hamming weight of z.

- Consider two cases $v = v'$ and $v \neq v'$. If $v = v'$, since $x \neq y$, we must have $u \neq u'$. In this case
 \[d(x, y) = w(u + u') + w(u + u') \]

- Since $u + u'$ is a nonzero codeword in C_1, $w(u + u') \geq d_1$. Therefore
 \[d(x, y) \geq 2d_1 \quad (3) \]

From triangle inequality, we have
\[
\begin{align*}
 d(x, y) &\geq d(x, z) - d(y, z) \\
 w(x + y) &\geq wt(x + z) - wt(y + z)
\end{align*}
\]
Minimum distance of a code

Problem #5 (contd.): Let \(x + z = v + v' \) and \(y + z = u + u' \), then we get

\[
w(u + u' + v + v') \geq w(v + v') - w(u + u')
\]

If \(v \neq v' \), we have

\[
d(x, y) \geq w(u + u') + w(v + v') - w(u + u') = w(v + v')
\]
Minimum distance of a code

Problem #5 (contd.): Let $x + z = v + v'$ and $y + z = u + u'$, then we get

$$w(u + u' + v + v') \geq w(v + v') - w(u + u')$$

- If $v \neq v'$, we have

$$d(x, y) \geq w(u + u') + w(v + v') - w(u + u')$$
$$= w(v + v')$$

- Since $v + v'$ is a nonzero codeword in C_2, $w(v + v') \geq d_2$, we have

$$d(x, y) \geq d_2$$

(4)

From (3) and (4) we have

$$d(x, y) \geq \min\{2d_1, d_2\}$$
Problem #5 (contd.): Let u_0 and v_0 be two minimum-weight codewords in C_1 and C_2 respectively.

The vector $|u_0|u_0|$ is a codeword in C with weight $2d_1$.
Problem #5 (contd.): Let u_0 and v_0 be two minimum-weight codewords in C_1 and C_2 respectively.

- The vector $|u_0|u_0|$ is a codeword in C with weight $2d_1$.
- Similarly the vector $|0|v_0|$ is a codeword in C with weight d_2.

Therefore

$$d(x, y) = \min \{2d_1, d_2\}$$