Numerical Optimization
Mathematical Background (I)

Shirish Shevade

Computer Science and Automation
Indian Institute of Science
Bangalore 560 012, India.

NPTEL Course on Numerical Optimization
Sets

Definition
A set is a collection of objects satisfying certain property P.

Examples:
- A set of natural numbers, \{1, 2, 3, \ldots\}
- $\{x \in \mathbb{R} : 1 \leq x \leq 3\}$

Note: A set not containing any object is called the empty set and is denoted by \emptyset.

Let A and B be two sets.

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$
Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$

If the intersection of two sets is empty, we say that the sets are \textit{disjoint}. That is, for two disjoint sets A and B, $A \cap B = \emptyset$.
Difference: $A \setminus B = \{x : x \in A \text{ and } x \not\in B\}$
Let A and B be two sets. If A is a subset of B, that is, every member of A is also a member of B, we write $A \subseteq B$. Further, if A is a subset of B and there exists $y \in B$ such that $y \notin A$, then we write $A \subset B$.
Supremum and Infimum of a set

Definition

A set A of real numbers is said to be *bounded above*, if there is a real number y such that $x \leq y$ for every $x \in A$. The smallest possible real number y satisfying $x \leq y$ for every $x \in A$ is called the *least upper bound* or *supremum* of A and is denoted by $\sup\{x : x \in A\}$.

Similarly, one can define *greatest lower bound* or *infimum*, $\inf\{x : x \in A\}$.

Example: Consider the set, $A = \{x : 1 \leq x < 3\}$

- $\sup\{x : x \in A\} = 3 (\notin A)$
- $\inf\{x : x \in A\} = 1 (\in A)$
Vector Space
A nonempty set S is called a *vector space* if

1. For any $x, y \in S$, $x + y$ is defined and is in S. Further,

 $x + y = y + x$ (commutativity)

 $x + (y + z) = (x + y) + z$ (associativity)

2. There exists an element in S, 0, such that $x + 0 = 0 + x = x$ for all x.

3. For any $x \in S$, there exists $y \in S$ such that $x + y = 0$.

4. For any $x \in S$ and $\alpha \in \mathbb{R}$, αx is defined and is in S. Further, $1x = x$ for every x.

5. For any $x, y \in S$ and $\alpha, \beta \in \mathbb{R}$,

 $\alpha(x + y) = \alpha x + \alpha y$

 $(\alpha + \beta)x = \alpha x + \beta x$

 $\alpha(\beta x) = (\alpha \beta)x$

Elements in S are called *vectors*
Notations

- \(\mathbb{R} \): Vector space of real numbers
- \(\mathbb{R}^n \): Vector space of real \(n \times 1 \) vectors
- \(n \)-vector \(\mathbf{x} \) is an array of \(n \) scalars, \(x_1, x_2, \ldots, x_n \)
 \[
 \mathbf{x} = \begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{pmatrix}
 \]
- \(\mathbf{x} \in \mathbb{R}^n, x_i \in \mathbb{R} \ \forall \ i \)
- \(\mathbf{x}^T = (x_1, x_2, \ldots, x_n) \)
- \(\mathbf{0}^T = (0, 0, \ldots, 0) \)
- \(\mathbf{1}^T = (1, 1, \ldots, 1) \) (We also use \(\mathbf{e} \) to denote this vector)
Mathematical Background

Definition
If S and T are vector spaces such that $S \subseteq T$, then S is called a *subspace* of T.

Question: What are all possible subspaces of \mathbb{R}^2?
Mathematical Background

Spanning Set

Definition

A set of vectors \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \) is said to *span* the vector space \(S \) if any vector \(\mathbf{x} \in S \) can be represented as

\[
\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i
\]

for some real coefficients \(\alpha_i, \ i = 1, \ldots, k. \)
Example: The vectors,
\[a_1 = (1, 0)^T, \ a_2 = (1, 1)^T; \ a_3 = (0, 1)^T, \ a_4 = (-1, 0)^T \text{ and } \ a_5 = (1, -1)^T \] span \(\mathbb{R}^2 \).
Linear Independence

Definition

A set of vectors x_1, x_2, \ldots, x_k is said to *linearly independent* if

$$
\sum_{i=1}^{k} \alpha_i x_i = 0 \Rightarrow \alpha_i = 0 \ \forall \ i.
$$

Otherwise, they are linearly dependent and one of them is a linear combination of the others.
Example: In \mathbb{R}^2,

- $a_1 = (1, 0)$ and $a_2 = (1, 1)$ are linearly independent.
- $a_1 = (1, 0)$ and $a_4 = (-1, 0)$ are linearly dependent.
Basis

Definition

A set of vectors is said to be a *basis* for the vector space S if it is linearly independent and spans S.
Example: For \mathbb{R}^2,

- $a_1 = (1, 0)$ and $a_2 = (1, 1)$ form a basis
- $a_1 = (1, 0)$ and $a_3 = (0, 1)$ form a basis
Mathematical Background

- A vector space does not have a unique basis.
- If x_1, x_2, \ldots, x_k is a basis for S, then any $x \in S$ can be uniquely represented using x_1, x_2, \ldots, x_k.
- Any two bases of a vector space have the same cardinality.
- The dimension of the vector space S is the cardinality of a basis of S.
- The dimension of the vector space \mathbb{R}^n is n.
- Let e_i denote an n-dimensional vector whose i-th element is 1 and the remaining elements are 0’s. Then, the set e_1, e_2, \ldots, e_n forms a standard basis for \mathbb{R}^n.
- A basis for the vector space S is a maximal independent set of vectors which spans the space S.
- A basis for the vector space S is a minimal spanning set of vectors which spans the space S.
Functions

Definition
A function f from a set A to a set B is a rule that assigns to each x in A a unique element $f(x)$ in B. This function can be represented by

$$f : A \rightarrow B.$$

Note:
- A: Domain of f
- $\{y \in B : (\exists x)[y = f(x)]\}$: Range of f
- Range of $f \subseteq B$

Examples:
- $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x) = x^2$
- $f : (-1, 1) \rightarrow \mathbb{R}$ defined as $f(x) = \frac{1}{|x|-1}$
Mathematical Background

Definition

A norm on \mathbb{R}^n is a real-valued function $\| \cdot \| : \mathbb{R}^n \to \mathbb{R}$ which obeys

1. $\|x\| \geq 0$ for every $x \in \mathbb{R}^n$, and $\|x\| = 0$ if and only if $x = 0$,
2. $\|\alpha x\| = |\alpha|\|x\|$ for every $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, and
3. $\|x + y\| \leq \|x\| + \|y\|$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$.

Shirish Shevade

Numerical Optimization
Mathematical Background

Let $x \in \mathbb{R}^n$.

Some popular norms:

- L_2 or Euclidean norm

\[\|x\|_2 = \left(\sum_{i=1}^{n} (x_i)^2 \right)^{\frac{1}{2}} \]

- L_1 norm

\[\|x\|_1 = \sum_{i=1}^{n} |x_i| \]

- L_∞ norm

\[\|x\|_\infty = \max_{i=1,...,n} |x_i| \]
Mathematical Background

Illustration of L_2 norm:

$$\|x\|_2 = \left(\sum_{i=1}^{n} (x_i)^2 \right)^{\frac{1}{2}}$$
\[S = \{ \mathbf{x} \in \mathbb{R}^2 : \| \mathbf{x} \|_2 \leq r \} \]
Mathematical Background

\[S = \{ x \in \mathbb{R}^2 : \| x \|_1 \leq 1 \} \]
$S = \{ \mathbf{x} \in \mathbb{R}^2 : \| \mathbf{x} \|_\infty \leq 1 \}$
Mathematical Background

- In general, the class of L_p ($1 \leq p < \infty$) vector norms is defined as

$$
\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}
$$

- **Question**: Does the convergence of a particular optimization algorithm depend on what norm its stopping criterion used?

Result

If $\| \cdot \|_p$ and $\| \cdot \|_q$ are any two norms on \mathbb{R}^n, then there exist positive constants α and β such that

$$
\alpha \|x\|_p \leq \|x\|_q \leq \beta \|x\|_p
$$

for any $x \in \mathbb{R}^n$.
Inner Product

Definition

Let \(x, y \in \mathbb{R}^n \) and \(x \neq 0 \neq y \). The *inner* or *dot* product of \(x \) and \(y \) is defined as

\[
x \cdot y \equiv x^T y = \sum_{i=1}^{n} x_i \cdot y_i = \|x\| \cdot \|y\| \cos \theta
\]

where \(\theta \) is the angle between \(x \) and \(y \).

Note:

- \(x^T x = \|x\|^2 \).
- \(x^T y = y^T x \)
- \(|x \cdot y| \leq \|x\| \cdot \|y\| \) \hspace{1cm} (*Cauchy-Schwartz inequality*)
Orthogonality

Suppose \mathbf{x} and \mathbf{y} are perpendicular to each other.

Using Pythagoras formula,

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{y}\|^2,$$

which gives $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x}^T\mathbf{y}$. That is, $\mathbf{x}^T\mathbf{y} = 0$
Orthogonality

Definition

Let \(\mathbf{x} \in \mathbb{R}^n \) and \(\mathbf{y} \in \mathbb{R}^n \). \(\mathbf{x} \) and \(\mathbf{y} \) are said to be perpendicular or orthogonal to each other if \(\mathbf{x}^T \mathbf{y} = 0 \).

Definition

Two subspaces \(S \) and \(T \) of the same vector space \(\mathbb{R}^n \) are orthogonal if every vector \(\mathbf{x} \in S \) is orthogonal to every vector \(\mathbf{y} \in T \), i.e. \(\mathbf{x}^T \mathbf{y} = 0 \ \forall \mathbf{x} \in S, \mathbf{y} \in T \).
Definition

Given a subspace S of \mathbb{R}^n, the space of all vectors orthogonal to S is called the *orthogonal complement* of S.
Mutual Orthogonality

Definition

Vectors \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \in \mathbb{R}^n \) are said to be \textit{mutually orthogonal} if \(\mathbf{x}_i \cdot \mathbf{x}_j = 0 \) for all \(i \neq j \). If, in addition, \(||\mathbf{x}_i|| = 1 \) for every \(i \), the set \(\{ \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \} \) is said to be \textit{orthonormal}.
Mutual Orthogonality

Is the set of mutually orthogonal vectors linearly independent?
Result

If \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \) are mutually orthogonal nonzero vectors, then they are linearly independent.

We need to show that

\[
\sum_{i=1}^{k} \alpha_i \mathbf{x}_i = 0 \Rightarrow \alpha_i = 0 \quad \forall \ i.
\]

Proof.

Let \(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_k \mathbf{x}_k = 0. \)

Therefore, \((\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_k \mathbf{x}_k)^T \mathbf{x}_1 = 0, \) or,

\[
\sum_{i=1}^{k} \alpha_i \mathbf{x}_i^T \mathbf{x}_1 = 0.
\]

This gives \(\alpha_1 \mathbf{x}_1^T \mathbf{x}_1 = 0 \) which implies \(\alpha_1 = 0. \)

Similarly we can show that each \(\alpha_i \) is zero.

Therefore, the mutually orthogonal vectors are linearly independent.
Suppose \mathbf{x}_1 and \mathbf{x}_2 are orthonormal.
Given any vector \mathbf{x}, we can write $\mathbf{x} = (\mathbf{x}^T \mathbf{x}_1) \mathbf{x}_1 + (\mathbf{x}^T \mathbf{x}_2) \mathbf{x}_2$.
We require orthonormality of given set of vectors.
Mathematical Background

Question: How to produce an orthonormal basis starting with a given basis $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$?
Mathematical Background

Gram-Schmidt Procedure

- Given x_1, x_2, x_3, a basis in \mathbb{R}^3
- To produce an orthonormal basis y_1, y_2, y_3.
- Without loss of generality, set $y_1 = \frac{x_1}{\|x_1\|}$
- Consider x_2 and remove its component in the y_1 direction.

$$z_2 = x_2 - (x_2^T y_1) y_1$$

- z_2 is orthogonal to y_1
- Set $y_2 = \frac{z_2}{\|z_2\|}$
- Start with x_3 and remove its components in the y_1 and y_2 directions.

$$z_3 = x_3 - (x_3^T y_1) y_1 - (x_3^T y_2) y_2$$

- z_3 is orthogonal to y_1 and y_2
- Set $y_3 = \frac{z_3}{\|z_3\|}$
- Easy to extend this procedure to a basis in \mathbb{R}^n
Mathematical Background

Matrices

- $A \in \mathbb{R}^{m \times n}$. A is a matrix of size $m \times n$.

$$A = \begin{pmatrix}
A_{11} & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \ldots & A_{mn}
\end{pmatrix}$$

- A_{ij} denotes (i,j)-element of A.

- $A = (a_1, a_2, \ldots, a_n)$ where $a_i \in \mathbb{R}^m$, $i = 1, \ldots, n$

- The transpose of A, denoted by A^T is the $n \times m$ matrix whose (i,j)-element is A_{ji}.

$$A^T = \begin{pmatrix}
a_1^T \\
a_2^T \\
\vdots \\
a_n^T
\end{pmatrix}$$
Mathematical Background

Matrices

- Diagonal Matrix: A square matrix Λ such that $\Lambda_{ij} = 0$, $i \neq j$

\[
\Lambda = \begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_n \\
\end{pmatrix}
\]

- Identity Matrix (I): A diagonal matrix such that $I_{ii} = 1 \ \forall \ i$

\[
I = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
\end{pmatrix}
\]

- Lower Triangular Matrix (L): A square matrix such that $L_{ij} = 0$, $i < j$
Mathematical Background

Matrices

- Let $A \in \mathbb{R}^{m \times n}$

Definition

The subspace of \mathbb{R}^m, spanned by the column vectors of A is called the *column space* of A. The subspace of \mathbb{R}^n, spanned by the row vectors of A is called the *row space* of A.

Definition

Column Rank: The dimension of the column space
Row Rank: The dimension of the row space

Definition

The column rank of a matrix A equals its row rank, and this common value is called the *rank* of A.

Shirish Shevade | Numerical Optimization
Let $A = \begin{pmatrix} 1 & 3 & -2 & 4 \\ -1 & -3 & 1 & -2 \end{pmatrix}$. $\text{rank}(A) = 2$

The rank of a matrix is 0 if and only if it is a zero matrix.

Matrices with the smallest rank - Rank one matrices

Example:

\[
\begin{pmatrix} 3 & 1 & -1 \\ -3 & -1 & 1 \\ 6 & 2 & -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} (3 \ 1 \ -1) = uv^T
\]

Every matrix of rank one has the simplest form, $A = uv^T$.
Mathematical Background

Matrices

Definition

A square matrix A is said to be invertible if there exists a matrix B such that $AB = BA = I$. There is at most one such B and is denoted by A^{-1}.

Easy to verify that,

- \[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{if} \quad (ad - bc) \neq 0.
\]

- \[
\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 \\ 0 & 1/\lambda_2 \end{pmatrix} \quad \text{if} \quad \lambda_1, \lambda_2 \neq 0.
\]
Mathematical Background

Matrices

A product of invertible matrices is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

- We denote the determinant of a matrix A by $\text{det}(A)$.

If $\text{det}(A) \neq 0$, then A is invertible.

- The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible if

 $$\text{det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$$

 i.e. $ad - bc \neq 0$

- The matrix Q is orthogonal if $Q^{-1} = Q^T$.
Matrix-vector multiplication, Ax

- $A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$ and $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- $Ax = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$
Matrix-vector multiplication, \(Ax \)

- \(A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \) and \(x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \).
- \(Ax = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 4x \)
Eigenvalues and Eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$. The eigenvalues and eigenvectors of A are the real or complex scalars λ and n-dimensional vectors x such that

$$Ax = \lambda x, \ x \neq 0.$$

- $Ax = \lambda x \Rightarrow (A - \lambda I)x = 0$
- λ is an eigenvalue of A if and only if
 $$\det(A - \lambda I) = 0 \quad (\text{characteristic equation of } A)$$
- This equation has n roots and are called the eigenvalues of A.
Eigenvalues and Eigenvectors

- Let $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$.
- Characteristic equation:

$$\det \begin{pmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{pmatrix} = 0$$

$$\Rightarrow (\lambda^2 - \lambda - 2) = 0$$

$$\Rightarrow \lambda = 2 \text{ or } \lambda = -1$$

- $\lambda_1 = 2$, $(A - \lambda_1 I)x_1 = 0$ gives x_1 to be a multiple of $(5, 2)^T$.
- $\lambda_2 = -1$, $(A - \lambda_2 I)x_2 = 0$ gives x_2 to be a multiple of $(1, 1)^T$.
- Eigenvalues of A : 2 and -1
- The corresponding eigenvectors of A : $(5, 2)^T$ and $(1, 1)^T$
Mathematical Background

Symmetric Matrices

Definition

Let $A \in \mathbb{R}^{n \times n}$. The matrix A is said to be *symmetric* if $A^T = A$.

- Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,
 - A has n real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and
 - a corresponding set of eigenvectors $\{x_1, x_2, \ldots, x_n\}$ can be chosen to be orthonormal.
 - $S = (x_1, x_2, \ldots, x_n)$ is an orthogonal matrix ($S^{-1} = S^T$).
 - $S^T A S = \begin{pmatrix}
\lambda_1 & 0 & \ldots & 0 \\
0 & \lambda_2 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_n
\end{pmatrix} = \Lambda$
Mathematical Background

Quadratic Form

- Let \(A \in \mathbb{R}^{n \times n} \) be a symmetric matrix
- Consider \(f(x) = x^T A x \), a pure quadratic form

<table>
<thead>
<tr>
<th>A is said to be</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive definite (pd)</td>
<td>(x^T A x > 0) for every nonzero (x \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>positive semi-definite (psd)</td>
<td>(x^T A x \geq 0) for every (x \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>negative definite (nd)</td>
<td>(x^T A x < 0) for every nonzero (x \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>negative semi-definite (nsd)</td>
<td>(x^T A x \leq 0) for every (x \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>indefinite</td>
<td>(A) is neither positive definite\nor negative definite</td>
</tr>
</tbody>
</table>

- **Question**: How to numerically check the positive definiteness of \(A \)?
Mathematical Background

Quadratic Form

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix
- Consider $f(x) = x^T Ax$, a pure quadratic form
- Eigenvalues of A : $\lambda_1, \lambda_2, \ldots, \lambda_n$
- Orthonormal Eigenvectors of A : x_1, x_2, \ldots, x_n
- $S = (x_1, x_2, \ldots, x_n)$

\[
x^T Ax = x^T S \Lambda S^T x = y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2
\]

Therefore, $\lambda_i > 0 \ \forall \ i \ \Rightarrow \ x^T Ax > 0$
Mathematical Background

To prove that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Rightarrow$ Every eigen value of \mathbf{A} is positive.

- Given, $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every $\mathbf{x} \neq 0$
- Therefore, $\mathbf{x}_i^T \mathbf{A} \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- That is, $\lambda_i \mathbf{x}_i^T \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- Thus, $\lambda_i > 0$ for every eigen vector \mathbf{x}_i.
Mathematical Background

Let \(A \in \mathbb{R}^{n \times n} \) be symmetric. Then,

<table>
<thead>
<tr>
<th>(A) is said to be</th>
<th>if and only if, all the eigenvalues of (A) are</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive definite (pd)</td>
<td>positive</td>
</tr>
<tr>
<td>positive semi-definite (psd)</td>
<td>non-negative</td>
</tr>
<tr>
<td>negative definite (nd)</td>
<td>negative</td>
</tr>
<tr>
<td>negative semi-definite (nsd)</td>
<td>non-positive</td>
</tr>
</tbody>
</table>

- \(A \) is indefinite if and only if, it has both positive and negative eigenvalues.
Some other ways of checking positive definiteness

Let \(A \in \mathbb{R}^{n \times n} \) be symmetric.

- **Sylvester’s criterion:** \(A \) is positive definite if all its leading principal minors are positive.

\[
\begin{pmatrix}
 a & b & c \\
 b & e & f \\
 c & f & g
\end{pmatrix},
\begin{pmatrix}
 a & b & c \\
 b & e & f \\
 c & f & g
\end{pmatrix},
\begin{pmatrix}
 a & b & c \\
 b & e & f \\
 c & f & g
\end{pmatrix}
\]

- \(A \) is positive definite if there exists a unique lower triangular matrix \(L \in \mathbb{R}^{n \times n} \) with positive diagonal components such that \(A = LL^T \) (Cholesky Decomposition).
Examples

- \[
\begin{pmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{pmatrix}
\]
is positive definite

(The eigenvalues are \(2 - \sqrt{2}, 2 + \sqrt{2}\) and 2).

- \[
\begin{pmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{pmatrix}
\]
is positive semi-definite

- \[
\begin{pmatrix}
1 & -2 & 4 \\
-2 & 2 & 0 \\
4 & 0 & -7
\end{pmatrix}
\]
is indefinite
Solution of $Ax = b$

- Let $A \in \mathbb{R}^{n \times n}$, symmetric and positive definite
- Solution of $Ax = b$ is $x^* = A^{-1}b$
- Instead, use Cholesky decomposition of A, $A = LL^T$
- The given system of equations is $LL^T x = b$
- Solve the *triangular* system, $Ly = b$ using *forward substitution* to get y.
- Solve the *triangular* $L^T x = y$ using *backward substitution* to get x^*.
- Cholesky decomposition is a *numerically stable* procedure
Mathematical Background

Solution of $Ax = b$

- $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix}$

- Cholesky decomposition of $A = LL^T$ gives

$$L = \begin{pmatrix} 1.4142 & 0 & 0 \\ -0.7071 & 1.2247 & 0 \\ 0 & -0.8165 & 1.1547 \end{pmatrix}$$

- Solution of $Ly = b$ gives $y = \begin{pmatrix} 0 \\ 3.2660 \\ -1.1547 \end{pmatrix}$

- Solution of $L^Tx = y$ results in

$$x^* = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
Some References