1 Contract an edge.
2 Delete a vertex.
3 Delete an edge.
Let G be a graph. If X is another graph, and \(\{ V_x : x \in V(X) \} \) is a partition of $V(G)$ into connected subsets such that for any two vertices $x, y \in X$, there is a V_x-V_y edge in G if and only if $(x, y) \in E(G)$, we say that G is an MX and write $G = MX$. V_x are the branch sets of MX.
\(G \) is an MX if and only if \(X \) can be obtained from \(G \) by a series of edge contractions, i.e. if and only if there are graphs \(G_0, \ldots, G_n \) and edges \(e_i \in G_i \) such that \(G_0 = G \), \(G_n = X \) and \(G_{i+1} = G_i / e_i \), for all \(i < n \).
If $G = MX$ is a subgraph of another graph Y, then we say that X is a minor of Y.
If we replace the edges of X with independent paths between ends, we call the graph G obtained a subdivision of X, and write $G = TX$. If TX is a subgraph of Y then X is a topological minor of Y.
If $\Delta(X) \leq 3$ then every MX contains a TX.
Hadwiger’s Conjecture: The following implication holds for every integer $r > 0$ and every graph G.

$\chi(G) \geq r$ implies that K_r is a minor of G.

A graph with at least 3 vertices is edge maximal without a K_4 minor if and only if it can be constructed recursively from triangles by pasting along K_2s.
Every edge maximal graph without a K_4 minor has $2|G| - 3$ edges.
Hadwiger’s Conjecture holds for $r = 4$
Wagner, 1937: Let G be an edge maximal graph without a K_5 minor. If $|G| \geq 4$, then G can be constructed recursively, by pasting along K_3s and K_2s from plane triangulations and copies of the graph W.
A graph with n vertices and no K_5 minor has at most $3n - 6$ edges.
Hadwiger’s conjecture holds for $r = 5$.
(Robertson, Seymour and Thomas, 1993) Hadwiger’s conjecture holds for $r = 6$.
Kühn and Osthus: For every integer s, there is an integer r_s such that Hadwiger Conjecture holds for all graphs $G \nsubseteq K_{s,s}$ and $r \geq r_s$.
There is a constant g such that all graphs G of girth at least g satisfy the implication
\[\chi(G) \geq r \rightarrow G \supseteq TK_r \text{ for all } r.\]
There is a constant $c \in \mathbb{R}$ such that for $r \in \mathbb{N}$, every graph G of average degree $d(G) \geq cr^2$ contains K_r as a topological minor.
Kostochka, 1982: There exists a constant $c \in \mathbb{R}$ such that for every $r \in \mathbb{N}$, every graph G of average degree $d(G) \geq cr \sqrt{\log r}$ contains K_r as a minor. Up to the value of c, this bound is best possible as a function of r.
Let $d, k \in \mathbb{N}$ with $d \geq 3$ and let G be a graph of minimum degree $\delta(G) \geq d$ and girth $g(G) \geq 8k + 3$. Then G has a minor H of minimum degree $\delta(H) \geq d(d - 1)^k$.
Thomassen, 1983: There exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$, such that every graph of minimum degree at least 3 and girth at least $f(r)$ has a K_r minor, for all $r \in \mathbb{N}$.
Take $f(r) = 8 \log r + 4 \log \log r + c$ for some constant $c \in \mathbb{R}$. Take $k = k(r)$ minimal with $3.2^k \geq c' r \sqrt{\log r}$, where c' is the constant from Kostochka’s Lemma.
There exists a constant g such that $G \supseteq TK_r$ for every graph G satisfying $\delta(G) \geq r - 1$ and girth $\geq g$.