Graph Theory: Lecture No. 36

L. Sunil Chandran

Computer Science and Automation, Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in
For every integer $k \geq 3$, the Ramsey number of k satisfies: $R(k) > 2^{k/2}$
The Mean or Expected Value of a random variable X is the number

$$E(X) = \sum_{G \in \mathcal{G}(n,p)} P(G).X(G).$$
Markov’s Inequality: Let $X \geq 0$, be a random variable on $G(n, p)$ and $a > 0$. Then

\[P[X \geq a] \leq \frac{E(X)}{a} \]
The expected number of k-cycles in $G \in \mathcal{G}(n, p)$, is $E(X) = \frac{(n)_k}{2k} p^k$.
Let $k > 0$ be an integer, and let $p = p(n)$ be a function of n such that $p \geq (6k \ln n)/n$ for large n. Then $\lim_{n \to \infty} P(\alpha \geq \frac{n}{2k}) = 0$
For every integer k, there exists a graph H with girth $g(H) > k$ and chromatic number $\chi(H) > k$.