Graph Theory: Lecture No. 34

L. Sunil Chandran

Computer Science and Automation,
Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in
Let $D = (V, A)$ be a directed graph. Suppose that with each arc a of D, are associated two real numbers $b(a)$ and $c(a)$ such that $b(a) \leq c(a)$. A circulation f in D is feasible (with respect to the functions b and c) if $b(a) \leq f(a) \leq c(a)$ for all $a \in A$. A feasible tension is defined analogously.
An obvious necessary condition for the existence of a feasible circulation: For each subset X of V, $c^+(X) \geq b^-(X)$
Hoffman’s Circulation Theorem: A digraph D has a feasible circulation with respect to bounds b and c if and only if these bounds satisfy the above inequality for every subset X of V. Furthermore, if both b and c are integral valued, and satisfy this inequality, then D has an integer-valued feasible circulation.
Ghouila-Houri’s Theorem: A digraph D has a feasible tension with respect to bounds b and c if and only if these bounds satisfy:

\[b(C^-) \leq c(C^+) \]

for all cycles C in D with a sense of traversal. If b and c are integer valued and satisfy the above inequality, then D has an integer valued feasible tension.
A function f on the arc set A of digraph D is nowhere-zero if $f(a) \neq 0$ for each arc $a \in A$, i.e. if the support of f is the entire arc set A.
A nowhere zero circulation f over Z in a digraph D is called a k-flow if
$-(k - 1) \leq f(a) \leq (k - 1)$, for all $a \in A$.

A graph admits a nowhere zero circulation over \mathbb{Z}_k if and only if it admits a k-flow.
The flow number of a graph is defined to be the smallest positive integer k, for which it has a k-flow.
A graph admits a 2-flow if and only if it is even
A 2-edge connected cubic graph admits a 3-flow if and only if it is bipartite
Tutte’s Flow conjectures:
(1) The 5-flow conjecture: Every 2-edge connected graph admits a 5-flow.
(2) The 4-flow conjecture: Every 2-edge connected graph without a peterson graph minor admits a 4-flow.
(3) The 3-flow conjecture: Every 2-edge connected graph without 3-edge cuts admits a 3-flow.