1. \[X = \{ x^2 \}, \quad p(v) = \emptyset, \quad \forall v \in V \]

2. While (there is either an f-unsaturated arc \(a = (u, v) \) or an f-positive arc \(a = (v, u) \) with \(u \in X \) and \(v \in V - X \)), do
\[X = X \cup \{v\}, \]

\[p(v) = u \]

end (while)

If \(y \in X \), then find \(\exists(p) \)

\[= \min \{ \exists(a): a \in P \} \]

where \(P \) is the \(x-y \) path defined by the predicates \(p \).
for a forward arc \(a \) of \(P \)
\[
f(a) = f(a) + \varepsilon(p).
\]

for a reverse arc \(a \) of \(P \)
\[
f(a) = f(a) - \varepsilon(p)
\]
return \(f, \ 2^t(x) \)
\textbf{Circulations}

\[x \quad v \in V - \{x, y\} \quad y \]

\[f^+(v) = f^-(v) \]

If for all \(v \in V \), \(f^+(v) = f^-(w) \)
\[s(a) \rightharpoonup \text{val}(f) \]
\[\text{support} \left\{ a \in A : f(a) \neq 0 \right\} \]
$f_c(a) = 1$ $f_c(a) = -1$