Every graph G with $n \geq 3$ and $\kappa(G) \geq \alpha(G)$ has a hamilton cycle.
If G is a graph with n vertices and degrees $d_1 \leq d_2 \leq \ldots \leq d_n$ then the n-tuple (d_1, \ldots, d_n) is called the degree sequence of G.

An arbitrary integer sequence (a_1, a_2, \ldots, a_n) is called Hamiltonian, if every graph with n vertices and a degree sequence pointwise greater than (a_1, a_2, \ldots, a_n) is hamiltonian.
An integer sequence \((a_1, a_2, \ldots, a_n)\) such that
\[0 \leq a_1 \leq a_2 \leq \ldots a_n < n\] and \(n \geq 3\) is hamiltonian if and only if the following holds for every \(i < n/2\):
\[a_i \leq i \rightarrow a_{n-i} \geq n - i.\]