Graph Theory: Lecture No. 19

L. Sunil Chandran

Computer Science and Automation,
Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in
The least integer k such that G has an edge coloring from any family of lists of size k is the list chromatic index $\text{ch}'(G)$ of G. That is $\text{ch}'(G) = \text{ch}(L(G))$ where $L(G)$ is the line graph of G. Clearly $\text{ch}'(G) \geq \chi'(G)$
The List Coloring Conjecture: Every graph G satisfies $ch'(G) = \chi'(G)$.
Let D be a directed graph. An independent set $U \subseteq V(D)$, such that for every vertex $v \in D - U$, there is an edge in D directed from v to a vertex in U, is called a kernel of D.
Let \(H \) be a graph and \((S_v)_{v \in V(H)}\) be a family of lists. If \(H \) has an orientation \(D \) with \(d^+(v) < |S_v| \) for every vertex \(v \) and such that every induced subgraph of \(D \) has a kernel, then \(H \) can be colored from the list \(S_v \).
Let a family \((\leq_v)_{v \in V}\) of linear orderings \(\leq_v\) on \(E(v)\) a set of preferences for \(G\). Then call a matching \(M\) in \(G\) stable if for every edge \(e \in E - M\), there exists an edge \(f \in M\) such that \(e\) and \(f\) have a common vertex \(v\) with \(e \leq_v f\).
For every set of preferences, G has a stable matching.
Every bipartite graph G satisfies,
$ch'(G) = \chi'(G)$.
A matching M in G is better than a matching $M' \neq M$ if M makes the vertices in B happier than M' does, i.e. if every vertex b in an edge $f' \in M'$ is incident also with some $f \in M$ such that $f' \leq_b f$.
Given a matching M, call a vertex $a \in A$ acceptable to $b \in B$ if $e = ab \in E - M$ and any edge $f \in M$ at b satisfies $f \leq_b e$.
$a \in A$ is happy with M if a is unmatched or its matching edge $f \in M$ satisfies $f >_a e$ for all edges $e = ab$ such that a is acceptable to b.