Graph Theory: Lecture No. 2

L. Sunil Chandran

Computer Science and Automation,
Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in
A set \(M \) of independent edges in \(G \) is called a matching.

- Matched vertex
- Unmatched vertex
The cardinality of the biggest matching in G can be denoted by $\alpha'(G)$.
What is the value of $\alpha'(G)$ for:

- Cycle C_n
- Path P_n
- Complete Graph K_n
- Complete Bipartite graph $K_{m,n}$
If every vertex of G is matched with respect to a matching M, then it is called a perfect matching.
How many edges are there in a perfect matching, if G has n vertices? What can we tell about n?
A perfect matching is also known as a 1-factor.

A k-factor is a k-regular spanning subgraph of G.

What can we tell about a 2-factor.
In general do we have any relation between $\alpha'(G)$ and $\alpha(G)$?

$\alpha(G) \geq n - 2\alpha'(G)$

So, do we have any relation between the minimum vertex cover and maximum matching?

$n - \beta(G) \geq n - 2\alpha'(G)$

$\alpha'(G) \leq \beta(G) \leq 2\alpha'(G)$
A stronger relation holds in bipartite graphs (König, 1931)

For a bipartite graph G, the maximum cardinality of a matching is equal to the minimum cardinality of its vertex cover
Suppose König’s statement, namely \(\beta(G) = \alpha'(G) \) is true, for bipartite graphs. And we are trying to come up with a proof.
Suppose M is a matching such that $|M| = \alpha'(G)$.
For proving the theorem we will try to demonstrate a vertex cover S, with $|S| = \alpha'(G)$
S should be such that it contains exactly one point from each edge of M
So we see that we are forced to add some edges in S. Let us try to understand this.
An alternating path: A path that starts at an unmatched vertex in A and then contains alternately edges from $E - M$ and M. If an alternating path ends at an unmatched vertex, then it is called an augmenting path. An augmenting path starts from an unmatched vertex on the A side, and ends at an unmatched vertex on the B side. If we can find in G and augmenting path with respect to M, then M is not a maximum matching.
Hall’s Condition:
For all $S \subseteq A$, $|N(S)| \geq |S|$.
Hall’s Theorem

A bipartite graph G has a matching of A if and only if G satisfies Hall’s condition.
Using Hall’s Theorem:

If G is k-regular ($k \geq 1$) bipartite graph, then it has a perfect matching