Regulated Re-writing

In a given grammar, re-writing can take place at a step of a derivation by the usage of any applicable rule in any desired place. That is if A is a nonterminal occurring in any sentential form say $\alpha A\beta$, the rules being

$$A \to \gamma$$
$$A \to \delta$$

$$A \rightarrow \delta$$

then any of these two rules are applicable for the occurrence of A in $\alpha A\beta$. Hence, one encounters nondeterminism in its application. One way of naturally restricting the nondeterminism is by regulating devices, which can select only certain derivations as correct in such a way that the obtained language has certain useful properties. For example, a very simple and natural control on regular rules may yield a non regular language.

While defining the four types of grammars, we put restrictions in the form of production rules to go from type 0 to type 1, then to type 2 and type 3. In this chapter we put restrictions on the manner of applying the rules and study the effect. There are several methods to control re-writing, some of the standard control strategies are as follows

Matrix Grammar

A matrix grammar is a quadruple G = (N,T,P,S) where N, T and S are as in any Chomsky grammar. P is a finite set of sequences of the form:

$$m = [\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \dots, \alpha_n \rightarrow \beta_n]$$

 $n \ge 1$, with $\alpha_i \in (N \cup T)^+$, $\beta_i \in (N \cup T)^*$, $1 \le i \le n$. m is a member of P and a 'matrix' of P.

G is a matrix grammar of type i, where $i \in \{0,1,2,3\}$, if and only if the grammar $G_m = (N,T,m,S)$ is of type i for every $m \in P$.

Similarly, G is $\mathcal{E}-free$ if each G_m is $\mathcal{E}-free$

Definition 1

Let G = (N,T,P,S) be a matrix grammar. For any two strings $u,v \in (N \cup T)^+$, we write $u \underset{G}{\Longrightarrow} v$ (or $u \underset{G}{\Longrightarrow} v$ if there is no confusion on G), if and only if there are strings u_0,u_1,u_2,\ldots,u_n in $(N \cup T)^+$ and a matrix $m \in M$ such that $u = u_0,u_n = v$ and

$$u_{i-1} = u'_{i-1} x_i u''_{i-1}, u_i = u'_{i-1} y_i u''_{i-1}$$

for some $u_{i-1}^{'}, u_{i-1}^{''}$ for all $0 \le i \le n-1$ and $x_i \to y_i \in m, 1 \le i \le n$.

Clearly, any direct derivation in a matrix grammar G corresponds to an n-step derivation by $G_m = (N, T, P, S)$. That is, the rules in m are used in sequence to reach $v \mapsto$ is the reflexive, transitive closure of \Rightarrow and

$$L(G) = \{ w/w \in T^*, S \stackrel{*}{\Longrightarrow} w \}$$

Definition 2

Let G = (N, T, P, S) be a matrix grammar. Let F be a subset of rules of M. We now use the rules of F such that, the rules in F can be passed over if they cannot be applied, whereas the other rules in any matrix $m \in P$ not in F must be used. That is, for

$$u,v \in (N \cup T)^+, u \Longrightarrow_m v,$$

if and only if there are strings u_0, u_1, \ldots, u_n and a matrix $m \in M$ with rule $\{r_1, r_2, \ldots, r_n\}$ (say), with r_i :

$$x_i \to y_i$$
 $1 \le i \le n$.

Then , either $u_{i-1}=u_{i-1}^{'}x_iu_{i-1}^{'}$, $u_i=u_{i-1}^{'}y_iu_{i-1}^{'}$ or the rule $x_i\to y_i\in F$. Then $u_i=u_{i-1}$

This restriction by F on any derivation is denoted as \overrightarrow{ac} , where 'ac' stands for 'appearance checking' derivation mode. Then,

$$L(G,F) = \left\{ w / S \stackrel{*}{\Longrightarrow} w, w \in T^* \right\}$$

Let $M\left(M_{ac}\right)$ denote the family of matrix languages without appearance checking (with appearance checking) of type 2 without $\mathcal{E}-rules$.

Let $M^{\lambda}(M_{ac}^{\lambda})$ denote the family of matrix languages without appearance checking (with appearance checking) of type 2 with ε – rules.

Let
$$G = (N, T, P, S)$$
 be a matrix grammar where $N = \{S, A, B, C, D\}$ $T = \{a, b, c, d\}$ $P = \{P_1, P_2, P_3, P_4\}$, where $P_1 : [S \rightarrow ABCD]$ $P_2 : [A \rightarrow aA, B \rightarrow B, C \rightarrow cC, D \rightarrow D]$ $P_3 : [A \rightarrow A, B \rightarrow bB, C \rightarrow C, D \rightarrow dD]$ $P_4 : [A \rightarrow a, B \rightarrow b, C \rightarrow c, D \rightarrow d]$

Some sample derivations are:

$$S \Rightarrow ABCD \Rightarrow aABcCD \Rightarrow aabccd$$
 P_1
 $S \Rightarrow ABCD \Rightarrow aABcCD \Rightarrow aAbBcCdD \Rightarrow aabbccdd$
 P_2
 P_3
 P_4

We can see that the application of matrix P_2 produces an equal number of a's and c's, application of P_3 produces an equal number of b's and d's. P_4 terminates the derivation. Clearly

$$L(G) = \{a^n b^m c^n d^m \mid n, m \ge 1\}.$$

The rules in each matrix are context free, but the language generated is context-sensitive and not context-free.

Let G = (N, T, P, S) be a matrix grammar with

$$N = \{S, A, B, C,\}$$

$$T = \{a, b\}$$

$$P = \{P_1, P_2, P_3, P_4, P_5\}, \text{ where}$$

$$P_1: [S \to ABC]$$

$$P_2: [A \rightarrow aA, B \rightarrow aB, C \rightarrow aC]$$

$$P_3: [A \rightarrow bA, B \rightarrow bB, C \rightarrow bC]$$

$$P_4: [A \to a, B \to a, C \to a]$$

$$P_5: [A \rightarrow b, B \rightarrow b, C \rightarrow b]$$

Some sample derivations are:

$$S \Rightarrow ABC \Rightarrow aAaBaC \Rightarrow abAabBabC \Rightarrow abaabaaba$$
 $P_{p_1} \Rightarrow ABC \Rightarrow bAbBbC \Rightarrow baAbaBbaC \Rightarrow babbabbab$

 $S \Rightarrow ABC \Rightarrow bAbBbC \Rightarrow baAbaBbaC \Rightarrow babbabbab$

clearly

$$L(G) = \left\{ www \mid w \in \left\{ a, b \right\}^+ \right\}.$$

Programmed Grammar

A Programmed Grammar is a 4-tuple G=(N,T,P,S) where N, T and S are as in any Chomsky grammar. Let r be a collection of re-writing rules over $N \cup T$, lab (R) being the labels of R. σ and φ are mappings from lab(R) to $2^{lab(R)}$

$$P = \{ (r, \sigma(r), \varphi(r)) | r \in R \}$$

Here, G is said to be type i, or $\mathcal{E}-free$ if the rules in R are all type i, where i = 0,1,2,3 or $\mathcal{E}-free$, respectively.

Definition 3

For any x, y over $(N \cup T)^*$, we define derivation as below:

- (i) $(u, r_1) \Rightarrow (v, r_2)$ if and only if $u = u_1 x u_2, v = u_1 y u_2$ for u_1, u_2 are over $N \cup T$ and $(r_1 : x \rightarrow y, \sigma(r_1), \varphi(r_1)) \in P$ and $r_2 \in \sigma(r_1)$ and
- (ii) $(u, r_1) \Rightarrow (v, r_2)$ if and only if $(u, r_1) \Rightarrow (v, r_2)$ holds, or else u=v if $r_1: (x \to y, \sigma(r_1), \varphi(r_1))$ is not applicable to u, i.e., x is not a sub word of u and $r_2 \in \varphi(r_1)$. Thus, $\Rightarrow ac$ only depends on φ

Here, $\sigma(r)$ is called the success field as the rule with label r is used in the derivation step. $\varphi(r)$ Is called the failure field as the rule with label r cannot be applied and we move on to a rule with label in $\varphi(r)$.

 \Rightarrow , \Longrightarrow are the reflexive and transitive closures of \Rightarrow and \Longrightarrow , respectively.

The language generated is defined as follows:

$$L(G,\sigma) = \left\{ w \mid w \in T^*, (S_1, r_1) \stackrel{*}{\Longrightarrow} (w, r_2) \text{ for some } r_1, r_2 \in lab(P) \right\}$$
$$L(G,\sigma,\varphi) = \left\{ w \mid w \in T^*, (S_1, r_1) \stackrel{*}{\Longrightarrow} (w, r_2) \text{ for some } r_1, r_2 \in lab(P) \right\}$$

Let $P(P_{ac})$ denote the family of programmed languages without (with) appearance checking of type 2 without $\mathcal{E}-rules$.

Let $P^{\lambda}(P_{ac}^{\lambda})$ denote the family of programmed languages without (with) appearance checking of type 2 with ε – rules.

Let
$$G = (N, T, P, S)$$
 be a programmed grammar with

$$N = \{S, A, B, C, D\}$$
$$T = \{a, b, c, d\}$$

P:

	r	$\sigma(r)$	$\varphi(r)$
1.	S→ ABCD	2,3,6	ϕ
2.	A→ aA	4	ϕ
3.	B→ bB	5	ϕ
4.	$C \longrightarrow cC$	2,3,6	ϕ

-(--)

ľ

$$\sigma(r)$$

 $\varphi(r)$

5. $D \longrightarrow dD$

2,3,6

 ϕ

6. A → a

7

 ϕ

7. $B \longrightarrow b$

8

 ϕ

8. C → c

9

 ϕ

9. D → d

 ϕ

 ϕ

Let
$$lab(F) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Some sample derivations are

$$S \underset{1}{\Longrightarrow} ABCD \underset{6}{\Longrightarrow} aBCD \underset{7}{\Longrightarrow} abCD \underset{8}{\Longrightarrow} abcD \underset{9}{\Longrightarrow} abcd$$

$$S \underset{1}{\Longrightarrow} ABCD \underset{2}{\Longrightarrow} aABCD \underset{4}{\Longrightarrow} aABcCD \underset{6}{\Longrightarrow} aaBcCD$$

$$\underset{7}{\Longrightarrow} aabcCD \underset{8}{\Longrightarrow} aabccD \underset{9}{\Longrightarrow} aabccd$$

$$L(G) = \left\{ a^n b^m c^n d^m \mid n, m \ge 1 \right\}$$

Let G = (N, T, P, S) be a programmed grammar with

$$N = \{S, A, B, C\}$$

$$T = \{a, b\}$$

P:

	r	σ	φ
1.	S→ ABC	2,5,8,11	ϕ
2.	A→ aA	3	ϕ
3.	B→ aB	4	ϕ
4.	C→ aC	2,5,8,11	ϕ

$$\sigma$$

5.
$$A \longrightarrow bA$$

$$\phi$$

6.
$$B \longrightarrow bB$$

$$\phi$$

$$\phi$$

$$\phi$$

$$\phi$$

$$\phi$$

$$\phi$$

$$\phi$$

$$L(G) = \{www \mid w \in \{a,b\}^+\}.$$

Random Context grammar

A Random context grammar has two sets of nonterminals X, Y where the set X is called the permitting context and Y is called the forbidding context of a rule $x \rightarrow y$.

Definition 4

G = (N, T, P, S) is a random context grammar where N, T and S are as in any Chomsky grammar, where

$$p = \{(x \to y, X, Y) | x \to y \text{ is a rule over } N \cup T, X, Y \text{ are subsets of } N\}$$

We say $u \Rightarrow v$ if and only if u = u'xu'', v = u'yu'' for u', u'' over $N \cup T$ $(x \rightarrow y, X, Y)$ such that all symbols X appear in and appears in u'u'' and no symbol of Y appears in u', u''. $\stackrel{*}{\Rightarrow}$ is the reflexive transitive closure of \Rightarrow .

$$L(G) = \left\{ w : S \xrightarrow{*} w, w \in T^* \right\}.$$

As before, L is of type i, whenever G with rules $x \rightarrow y$ in P are of type i, i=0,1,2,3, respectively.

Consider the random context grammar G = (N, T, P, S) where $N = \{S, A, B, C\}$ $T = \{a\}$ $\left\{ (S \to AA, \phi, \{B, D\}), (A \to B, \phi, \{S, D\}), (B \to S, \phi, \{A, D\}), (A \to D, \phi, \{S, B\}), (D \to a, \phi, \{S, A, B\}), \right\}.$

Some sample derivations are

$$S \Rightarrow AA \Rightarrow DA \Rightarrow DD \Rightarrow aD \Rightarrow aa$$

$$S \Rightarrow AA \Rightarrow BA \Rightarrow BB \Rightarrow SB \Rightarrow SS$$

$$\Rightarrow AAS \Rightarrow AAAA \Rightarrow a^{4}$$

$$L(G) = \left\{ a^{2^{n}} \mid n \ge 1 \right\}.$$

Time varying Grammar

Given a grammar G, one can think of applying a set of rules only for a particular period. That is, the entire set of P is not available at any step of a derivation. Only a subset of P is available at any time 't' or at any i-th step of a derivation.

Definition 5

A time-varying grammar of type i, $0 \le i \le 3$, is an ordered pair (G, ϕ)

where G = (N, T, P, S) is a type i grammar, and ϕ is a mapping of the set of natural numbers into the set of subsets of $P \cdot (u, i) \Rightarrow (v, j)$

holds if and only if:

- 1. j = i + 1 and
- 2. There are words u_1, u_2, x, y over $N \cup T$ such that $u = u_1 x u_2$, $v = u_1 y u_2$ and $x \to y$ is a rule over $N \cup T$ in $\varphi(i)$.

*

 \implies be the reflexive, transitive closure of \implies and

$$L(G,\phi) = \{w \mid (S,1) \stackrel{*}{\Longrightarrow} (w,j)\} \text{ for some } j \in N, w \in T^*$$

A language L is time varying of type i if and only if for some time varying grammar (G,ϕ) is of type i with $L=L(G,\phi)$.

Definition 6

Let (G, ϕ) be a time varying grammar. Let F be a subset of the set of productions P. A relation \Rightarrow on the set of pairs (u, j), where u is a word over $N \cup T$ and j is a natural number which is defined as follows:

$$(u,j_1) \underset{ac}{\Longrightarrow} (v,j_2)$$
 holds, if $(u,j_1) \Longrightarrow (v,j_2)$ holds, or else, $j_2=j_1+1$, $u=v$, and for no production $x \to y$ in $F \cap \phi(j_1)$, $x \to y$ is a subword of $y \to y$.

 $\stackrel{*}{\Longrightarrow}$ is the reflexive, transitive closure of $\stackrel{*}{\Longrightarrow}$. Then, the language generated by (G,ϕ) with appearance checking for productions in F is defined as:

$$L_{ac}(G,\phi,F) = \left\{ w \mid w \in T^* \mid (S,1) \stackrel{*}{\underset{ac}{\Longrightarrow}} (w,j) \text{ for some } j \right\}$$

The family of languages of this form without appearance checking when the rules are context free (context-free and $\mathcal{E}-free$) and ϕ is a periodic function are denoted as τ^{λ} and τ , respectively. With appearance checking, they are denoted as τ^{α}_{ac} and τ_{ac} , respectively.

Let (G,ϕ) be a periodically time varying grammar with

$$G = (N, T, P, S)$$
 where $N = \{S, X_1, Y_1, Z_1, X_2, Y_2, Z_2\}$ $T = \{a, b\}$

$$P = \phi(1) \cup \phi(2) \cup \phi(3) \cup \phi(4) \cup \phi(5) \cup \phi(6)$$
 where

$$\phi(1) = \{S \to aX_1 aY_1 aZ_1, S \to bX_1 bY_1 bZ_1, X_1 \to X_1, Z_2 \to Z_2\}$$

$$\phi(2) = \{X_1 \to aX_1, X_1 \to bX_2, X_2 \to aX_1, X_2 \to bX_2, X_1 \to \varepsilon, X_2 \to \varepsilon\}$$

$$\phi(3) = \{Y_1 \to aY_1, Y_1 \to bY_2, Y_2 \to aY_1, Y_2 \to bY_2, Y_1 \to \varepsilon, Y_2 \to \varepsilon\}$$

$$\phi(4) = \{Z_1 \to aZ_1, Y_1 \to bZ_2, Z_2 \to aZ_1, Z_2 \to bZ_2, Z_1 \to \varepsilon, Z_2 \to \varepsilon\}$$

$$\phi(5) = \{X_2 \to X_2, Y_1 \to Y_1\}$$

$$\phi(6) = \{Y_2 \to Y_2, Z_1 \to Z_1\}$$

Some sample derivations are a

$$(S,1) \Rightarrow (aX_1aY_1aZ_1,2) \Rightarrow (aaY_1aZ_1,3) \Rightarrow (aaaZ_1,4) \Rightarrow (aaa,5)$$

$$(S,1) \Rightarrow (bX_1bY_1bZ_1,2) \Rightarrow (baX_1bY_1bZ_1,3) \Rightarrow (baX_1baY_2bZ_1,4)$$

$$\Rightarrow (baX_1baY_1baZ_1,5) \Rightarrow (baX_1baY_1baZ_1,6)$$

$$\Rightarrow (baX_1baY_1baZ_1,7) \Rightarrow (baX_1baY_1baZ_1,8)$$

$$\Rightarrow (babaY_1baZ_1,9) \Rightarrow (bababaZ_1,10)$$

$$\Rightarrow (bababa,11)$$

$$L(G,\phi) = \{www \mid w \in \{a,b\}^+\}$$

Let (G, ϕ) be a periodically time varying grammar with G = (N,T,P,S) $N = \{A, B, C, D, S, A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2\}$ $T = \{a, b, c, d\}$ $P: U\phi(i)$, where $\phi(1) = \{S \rightarrow aAbBcCdD, D_1 \rightarrow D, A_2 \rightarrow A\}$ $\phi(2) = \{A \to aA_1, A_1 \to A_2, A \to \varepsilon\}$

$$\phi(3) = \{B \to B_1, B \to bB_2, B \to \varepsilon\}$$

$$\phi(4) = \{C \to cC_1, C \to C_2, C \to \varepsilon\}$$

$$\phi(5) = \{D \to D_1, D \to dD_2, D \to \varepsilon\}$$

$$\phi(6) = \{A_1 \to A, B_2 \to B\}$$

$$\phi(7) = \{B_1 \to B, C_2 \to C\}$$

$$\phi(8) = \{C_1 \to C, D_2 \to D\}$$

$$L(G,\phi) = \{a^n b^m c^n d^m \mid n,m \geq 1\}.$$

Regular Control Grammars

Let G be a grammar with production set P and lab(P) be the labels of productions of P. To each derivation D, according to G, there corresponds a string over lab(P) (the so called control string). Let C be a language over lab(P). We define a language L generated by a grammar G such that every string of L has a derivation D with a control string from C. Such a language is said to be a controlled language.

Definition 7

Let G = (N, T, P, S) be a grammar. Let lab(P) be the set of labels of productions in P. Let F be a subset of P. Let D be a derivation of G and K be word over lab(P). K is a control word of D, if and only if the following conditions are satisfied:

- 1. For some string u, v, u_1, u_2, x, y over $N \cup T$, $D: u \Rightarrow v$ and K=f, where $u = u_1 x u_2$, $v = u_1 y u_2$ and $x \rightarrow y$ has a label f.
- 2. For some u, x, y, D is a derivation of a word 'u' only and $K = \varepsilon$ or else K = f, where $x \to y$ has a label $f \in F$ and x is not a sub word of u.
- 3. For some u, v, w, K_1, K_2 , D is a derivation $u \stackrel{*}{\Rightarrow} v \stackrel{*}{\Rightarrow} w$, where $K = K_1 K_2$ and $u \stackrel{*}{\Rightarrow} v$ uses K_1 as control string and $v \stackrel{*}{\Rightarrow} w$ uses K_2 as control string.

Let C be a language over the alphabet lab(P). The language generated by G with control language C with appearance checking rules F is defined by :

$$L_{ac}(G,C,F) = \{ w \in T^* \mid D : S \stackrel{*}{\Rightarrow} w, D \text{ has a control word } K \text{ of } C \}$$

If $F = \phi$ the language generated is without appearance checking and denoted by L(G,C)

Whenever C is regular and G is of type i, where i = 0, 1, 2, 3, then G is said to be a regular control grammar of type i.

Let $\mathcal{L}(i, j, k)$ denote a family of type i languages with type j control with k=0, 1. k=0 denotes without appearance checking; k=1 denotes with appearance checking.

Let G = (N, T, P, S) be a regular control grammar where

$$N = \{A, B, C, D, S\}$$

$$T = \{a, b, c, d\}$$

P :

- 1. $S \rightarrow ABC$
- 2. $A \rightarrow aA$
- 3. $B \rightarrow bB$
- 4. $C \rightarrow cC$
- 5. $D \rightarrow dD$

6.
$$A \rightarrow a$$

7.
$$B \rightarrow b$$

8.
$$C \rightarrow c$$

9.
$$D \rightarrow d$$

Then,
$$lab(P) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Let,
$$K = 1(24)^*(35)^*6789$$
. Clearly, K is regular. Then

$$L(G,K) = \{a^n b^m c^n d^m \mid n,m \ge 1\}$$

Some sample derivations are :

for
$$u = 124356789 \in K$$
,

$$S \underset{1}{\Longrightarrow} ABCD \underset{2}{\Longrightarrow} aABCD \underset{4}{\Longrightarrow} aABcCD \underset{3}{\Longrightarrow} aAbBcCD$$

$$\Rightarrow aAbBcCdD \underset{6}{\Longrightarrow} aabBcCdD \underset{7}{\Longrightarrow} aabbcCdD$$

$$\Rightarrow aabbccdD \underset{9}{\Longrightarrow} aabbccdd$$

If
$$u = 124246789 \in K$$

$$S \underset{1}{\Longrightarrow} ABCD \underset{2}{\Longrightarrow} aABCD \underset{4}{\Longrightarrow} aABcCD \underset{2}{\Longrightarrow} aaABcCD$$

$$\Rightarrow aaABccCD \underset{6}{\Longrightarrow} aaaBccCD \underset{7}{\Longrightarrow} aaabccCD$$

$$\Rightarrow aaabcccD \underset{9}{\Longrightarrow} aaabcccd$$

Let G = (N, T, P, S) be a grammar with

$$N = \{S, A, B, C\}$$

$$T = \{a,b\}$$

P:

- 1. $S \rightarrow ABC$
- 2. $A \rightarrow aA$
- 3. $B \rightarrow aB$
- 4. $C \rightarrow aC$
- 5. $A \rightarrow bA$
- 6. $B \rightarrow bB$

7.
$$c \rightarrow bC$$

8.
$$A \rightarrow a$$

9.
$$B \rightarrow a$$

10.
$$C \rightarrow a$$

11.
$$A \rightarrow b$$

12.
$$B \rightarrow b$$

13.
$$C \rightarrow b$$

and
$$lab(P) = \{1, 2, \dots 13\}$$

$$K = 1(234 + 567)^* (89(10) + (11)(12)(13))$$
 be a regular control on G.

$$L(G,K) = \left\{ www \mid w \in \left\{ a,b \right\}^+ \right\}$$

Indian Parallel Grammars

In the definition of matrix, programmed, time-varying, regular control, and random context grammars, only one rule is applied at any step of derivation. In this section, we consider parallel application of rules in a context-free grammars (CFG).

Definition 8

An Indian parallel grammar is a 4-tuple G=(N,T,P,S) where the components are as defined for a CFG . We say that $x\Rightarrow y$ holds in G for strings x, y over $N\bigcup T$, if

$$x = x_1 A x_2 A ... A x_n A x_{n+1}, A \in \mathbb{N}, x_i \in (\mathbb{N} \cup T) - \{A\}^*$$

for $1 \le i \le n+1$

$$y = x_1 w x_2 w \dots w x_n w x_{n+1}, \quad A \longrightarrow w \in P.$$

i.e., if a sentential form x has an occurrences of the nonterminal A, and if $A \to w$ is to be used it is applied to all A's in x simultaneously. $\stackrel{*}{\Longrightarrow}$ is the reflexive, transitive closure of \Longrightarrow

$$L(G) = \left\{ w \mid w \in T^*, S \stackrel{*}{\Longrightarrow} w \right\}$$

We consider the Indian parallel grammar:

$$G = (\{S\}, \{a\}, \{S \to SS, S \to a\}, S).$$

Some sample derivations are

$$S \Rightarrow a$$

 $S \Rightarrow SS \Rightarrow aa$,
 $S \Rightarrow SS \Rightarrow SSSS \Rightarrow aaaa$ and
 $L(G) = \{a^{2^n}/n \ge 0\}$.

It is clear from this example that some non-context free languages can be generated by Indian parallel grammars.

The other way round, the question is: can all context free languages (CFL) be generated by Indian parallel grammars? Since the first attempt to solve this was made in (Siromoney and Krithivasan . 1974), this type of grammar is called an Indian parallel grammar.